IDENTIFICATION OF STAPHYLOCOCCUS SPECIES, MICROCOCCUS SPECIES AND ROTHIA SPECIES

BSOP ID 7

Issued by Standards Unit, Evaluations and Standards Laboratory
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

Please note the references are now formatted using Reference Manager software. If you alter or delete text without Reference Manager installed on your computer, the references will not be updated automatically.

Suggested citation for this document:
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Controlled document reference</th>
<th>BSOP ID 7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled document title</td>
<td>Identification of Staphylococcus species, Micrococcus species and Rothia species</td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.

<table>
<thead>
<tr>
<th>Amendment Number/Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/14/09/2007</td>
<td>2</td>
<td>2.1</td>
<td>1</td>
<td>Front Page</td>
<td>Northern Ireland logo added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>Document put in to a standard format</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Whole document</td>
<td>All</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PDF links inserted to cross- reference NSM documents</td>
</tr>
</tbody>
</table>

IDENTIFICATION OF *STAPHYLOCCUS* SPECIES, *MICROCoccus* SPECIES AND *ROTHia* SPECIES

Issue no: 2.1 Issue date:17.09.07 Issued by: Standards Unit, Evaluations and Standards Laboratory Page no: 4 of 17

BSOP ID 72.1

This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk
IDENTIFICATION OF STAPHYLOCOCCUS SPECIES, MICROCOCCUS SPECIES AND ROTHIA SPECIES

SCOPE OF DOCUMENT

This National Standard Method (NSM) describes the procedure for the identification and differentiation of *Staphylococcus aureus*, *Staphylococcus* species, *Micrococcus* species and *Rothia* species. For the identification of catalase-negative Gram-positive cocci see BSOPID 4 - Identification of Streptococcus Species, Enterococcus Species and Morphologically Similar Organisms.

INTRODUCTION

The staphylococci most frequently associated with human infection are *S. aureus*, *S. epidermidis* and *S. saprophyticus*. Other *Staphylococcus* species may also be associated with human infection.

Taxonomy

More than thirty species of staphylococci have been recognised, most of which are found only in lower mammals. *Staphylococcus aureus* is coagulase positive; *Staphylococcus intermedius*, *Staphylococcus hyicus* and *Staphylococcus schleiferi* may also be coagulase positive. The coagulase-negative staphylococci (CNS) can be divided into six major groups, but the species found on humans are located within only two of those groups.

Characteristics

Staphylococcus species are Gram-positive, non-motile, non-sporing cocci occurring singly, in pairs and in irregular clusters: size may be variable. Colonies are opaque and may be white or cream and are occasionally yellow or orange. The optimum growth temperature is 30°C - 37°C. They are facultative anaerobes and have a fermentative metabolism. *Staphylococcus* species are usually catalase-positive and oxidase-negative. Nitrate is often reduced to nitrite. Some species are susceptible to lysis by lysostaphin but not by lysozyme and are usually able to grow in 10% sodium chloride. Some species produce extracellular toxins. *Staphylococci* may be identified by the production of deoxyribonuclease (DNase) and/or a heat-stable DNase (thermostable nuclease).

Coagulase-positive staphylococci

Staphylococcus aureus

Staphylococcus aureus is a primary pathogen, which may be associated with severe infection and it is important to distinguish it from the opportunistic coagulase-negative staphylococci. In routine laboratory practice, the production of coagulase is frequently used as the sole criterion to distinguish *S. aureus* from other staphylococci. Other coagulase-positive staphylococcal species such as *S. hyicus*, *S. schleiferi* subspecies *coagulans* or *S. intermedius* may be coagulase positive but have been found only occasionally in human infection or carriage. The production of coagulase and thermostable nuclease by these staphylococci may lead to their misidentification as *S. aureus*. It is also important to note that coagulase-negative strains of *S. aureus* have been reported.

S. aureus subspecies *anaerobius* is rarely isolated from clinical specimens. It grows poorly aerobically and growth may be CO₂ dependent. It is slide coagulase-negative and thermonuclease-negative. It may be catalase-negative. Strains may be identified by better growth anaerobically and they may give a positive coagulase test result. However, because growth may be poor the coagulase result may be negative and suspected isolates should be referred to the Reference Laboratory.

S. hyicus may be coagulase-positive (11 - 89% of strains) and thermostable nuclease-positive. *S. intermedius* is coagulase-positive and thermostable nuclease-positive. *S. schleiferi* subspecies
coagulans is coagulase-positive and thermostable nuclease-positive, and subspecies schleiferi is coagulase-negative and thermostable nuclease-positive.

S. aureus produces virulence factors such as protein A, capsular polysaccharides and α toxin. Some strains of *S. aureus* produce toxic shock syndrome 1 toxin (TSST-1), Panton Valentine Leucocidin or other toxins. Multi-resistance to antibiotics may be associated with methicillin resistant strains. It is thermostable nuclease-positive.

Coagulate negative staphylococci

The CNS are opportunistic pathogens which lack many of the virulence factors associated with *S. aureus*. There are more than 30 species of CNS. *S. epidermidis* and *S. saprophyticus* are the species most often associated with infection but *Staphylococcus capitis*, *Staphylococcus cohnii*, *Staphylococcus haemolyticus*, *Staphylococcus hominis*, *Staphylococcus lugdunensis*, S. schleiferi subspecies schleiferi, *Staphylococcus simulans* and *Staphylococcus warneri* have also been implicated. Many of these species are also thermostable nuclease-negative. Multi-resistance is associated with some strains of *S. epidermidis* which is thermostable nuclease-negative. *S. haemolyticus* is often multi-resistant and frequently demonstrates reduced susceptibility to teicoplanin. *S. saprophyticus* is novobiocin resistant. *Staphylococcus pasteuri* can be phenotypically distinguished from all of the other novobiocin-susceptible staphylococci except *S. warneri*, from which it can only be differentiated by genotyping.

S. saccharolyticus was previously known as *Peptococcus saccharolyticus*.

Micrococcus species

Micrococcus species are strictly aerobic. *Micrococcus luteus* produces yellow colonies. Cells are Gram-positive cocci arranged in tetrads. *Micrococcus* may be distinguished from *staphylococci* by a modified oxidase test. *Staphylococcus* species, with the exception of *S. sciuri*, *S. lentus* and *S. v ultulus* are oxidase-negative and *Micrococcus* species are oxidase-positive.

Rothia species

Rothia species are weakly catalase-positive. Growth is facultatively anaerobic. The species associated with infection is *Rothia mucilaginosus* which was previously known as *Micrococcus mucilaginosus* or *Staphylococcus salivarius*.

Principles of identification

Staphylococcus aureus has traditionally been identified by tube coagulate tests that detect staphylocoagulase or "free coagulase". However, detection of surface proteins such as clumping factor (slide coagulate test) and/or protein A (commercial latex tests) may be used for rapid identification. Inclusion of latex particles sensitized with antibodies against specific capsular antigens has enabled commercial manufacturer’s to improve the sensitivity of latex tests to detect atypical strains of *S. aureus* and MRSA that fail to express the major characteristics listed above. Positive results or suspected erroneous slide tests may be confirmed by a tube coagulate test.

TECHNICAL INFORMATION

N/A
1 SAFETY CONSIDERATIONS

Refer to current guidance on the safe handling of all organisms documented in this NSM.

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.

The above guidance should be supplemented with local COSHH and risk assessments.

Compliance with postal and transport regulations is essential.

2 TARGET ORGANISMS

*a Staphylococcus species reported to have caused human infection*²⁻⁶,⁸⁻¹³,¹⁶,²⁸⁻⁶¹

<table>
<thead>
<tr>
<th>Species</th>
<th>subspecies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Staphylococcus</td>
<td>aureus</td>
</tr>
<tr>
<td>aureus</td>
<td>aureus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>capitis</td>
</tr>
<tr>
<td>capitis</td>
<td>capitis</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>hominis</td>
</tr>
<tr>
<td>hominis</td>
<td>hominis</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>haemolyticus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>lugdunensis</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>saccharolyticus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>warneri</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>epidermidis</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>capitis</td>
</tr>
<tr>
<td>capitis</td>
<td>ureolyticus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>hominis</td>
</tr>
<tr>
<td>hominis</td>
<td>novobiosepticus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>S. epidermidis group</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>saprophyticus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>cohnii</td>
</tr>
<tr>
<td>cohnii</td>
<td>cohnii</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>ureolyticus</td>
</tr>
<tr>
<td>S. saprophyticus group</td>
<td></td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>caprae</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>hyicus</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>intermedius</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>schleiferi</td>
</tr>
<tr>
<td>schleiferi</td>
<td>coagulans</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>schleiferi</td>
</tr>
<tr>
<td>schleiferi</td>
<td>schleiferi</td>
</tr>
<tr>
<td>Staphylococcus</td>
<td>simulans</td>
</tr>
</tbody>
</table>
| Other species reported to have caused human infection¹⁵,⁶²⁻⁷⁰

Micrococcus luteus

Rothia mucilaginosus
3 IDENTIFICATION

3.1 MICROSCOPIC APPEARANCE

Gram stain (BSOPTP 39 - Staining Procedures)

Gram-positive cocci occurring singly, in pairs, tetrads and in irregular clusters.

3.2 PRIMARY ISOLATION MEDIA

Blood agar 16 - 48 h incubation in 5 - 10% CO₂ at 35°C - 37°C

These organisms may be isolated from other media including CLED, Staph/Strep selective and Mannitol Salt agar (MSA).

3.3 COLONIAL APPEARANCE

Colonies of *Staphylococcus* species are usually opaque and may be white or cream and sometimes yellow to orange on blood agar. Haemolysis may be detected. They appear as yellow-green, 1 - 2 mm, lactose-fermenting colonies on CLED. *Micrococcus* species produce yellow or red-pigmented colonies on blood agar. *Rothia* species are round, convex, mucoid and adhere to the agar. Colonial morphology varies with species and is not fully described here.

3.4 TEST PROCEDURES

Catalase test (see BSOPTP 8 - Catalase Test)

Staphylococcus, *Micrococcus* and *Rothia* species are catalase-positive.

S. aureus subspecies *anaerobius* and *S. capitis* may be catalase-negative.

Coagulase and other tests to detect *S. aureus* (see BSOPTP 10 - Coagulase Test)

Protein A, clumping factor (slide coagulase or latex), thermostable nuclease or tube coagulase tests may be used. Positive results or suspected erroneous slide tests (listed above) may be confirmed by a tube coagulase test.

S. aureus, some strains of *S. hyicus*, *S. intermedius*, and *S. schleiferi* subspecies *coagulans* are coagulase-positive and thermostable nuclease-positive. Other species of staphylococci are coagulase-negative and thermostable nuclease-negative or weak positive.

Modified oxidase test (see BSOPTP 26 - Oxidase Test)

A 6% solution of tetra-methyl-phenylene-diamine in dimethyl sulphoxide may be used to differentiate micrococci from most staphylococci.

Lysostaphin test

Commercial identification kit

3.5 FURTHER IDENTIFICATION

N/A

3.6 STORAGE AND REFERRAL

If required, save pure isolate on a nutrient agar slope for referral to the Reference Laboratory.
4 PRESUMPTIVE IDENTIFICATION OF STAPHYLOCOCCUS SPECIES – FLOW CHART

Clinical specimens
Primary isolation plate
Opaque, white, cream, yellow or orange colonies on blood agar

Urinary isolate

Suspected S. aureus

Gram stain
Gram positive cocci
If there is a different Gram stain appearance refer to the appropriate SOP

Modified oxidase
Positive
Micrococcus species

Negative
Staphylococcus species
(S. sciuri, S. lentus and S. vultus are oxidase positive)

Catalase
Negative
(S. anaerobius is catalase negative)

Consider other organisms

DNase, clumping factor (slide or commercial latex kit) Protein A or thermostable nuclease

Positive
Further identification if clinically indicated
Commercial identification system

Negative
Presumptive S. saprophyticus

Novobiocin

Resistant
Presumptive S. saprophyticus

S. aureus
(S. sciuri may be mistaken for MRSA. It can be distinguished from other Staphylococci by giving a positive oxidase reaction & hydrolysing aesculin)

S. saprophyticus

Sensitive
Coagulase negative Staphylococcus

Confirm with tube coagulase if required

Usually coagulase-negative Staphylococcus

Usually S. aureus

Confirm with tube coagulase if required
(S. hyicus and S. intermedius may be tube coagulase positive)
5 REPORTING

5.1 PRESCRIPTIVE IDENTIFICATION
If appropriate growth characteristics, colonial appearance, Gram stain of the culture, catalase and slide coagulase or latex agglutination results are demonstrated.

NOTE: *S. hyicus*, *S. intermedicus* and *S. schleiferi* may be tube coagulase positive.

5.2 CONFIRMATION OF IDENTIFICATION
Following confirmatory coagulase test results.

5.3 MEDICAL MICROBIOLOGIST
Inform the medical microbiologist of presumptive and confirmed *Staphylococcus aureus* when the request card bears relevant information, eg:
- toxin mediated phenomena (eg Toxic Shock Syndrome, scalded skin syndrome, epidermal necrolysis, bullous impetigo, necrotising pneumonia, food poisoning)
- history of substance abuse, alcoholism, immunodeficiency or other serious underlying disorder such as cancer, or patients receiving treatment for cancer (neutropenia and/or mucositis)
- outbreaks or instances of cross-infection

The medical microbiologist should also be informed of presumptive and confirmed isolates of *Staphylococcus* species under the following circumstances:
- osteomyelitis and septic arthritis
- infections involving indwelling medical devices, eg prosthetic valves, pacemakers, CSF shunts, peritoneal or vascular catheters
- endocarditis, haematogenous dissemination of infection, sepsicaemia
- serious soft-tissue infections (cellulitis, erysipelas, necrotising myofascitis, puerperal sepsis, surgical wound infection, pneumonia, peritonitis, meningitis, formation of abscesses or empyemas)

All isolates of multi-drug resistant *S. aureus*, including MRSA, should be brought to the attention of the medical microbiologist

Follow local protocols for reporting to clinician.

5.4 CCDC
Refer to local Memorandum of Understanding.

5.5 CENTRE FOR INFECTIONS
Refer to current guidelines on CDSC and COSURV reporting.

5.6 INFECTION CONTROL STAFF
Inform the infection control team of isolates of methicillin resistant *Staphylococcus aureus*.
6 REFERRALS

6.1 REFERENCE LABORATORY

For information on the tests offered, turn around times, transport procedure and the other requirements of the reference laboratory refer to: http://www.hpa.org.uk/cfi/lhcai/default.htm

Staphylococcus Reference Laboratory Section
Laboratory of Healthcare-Associated Hospital Infection
Centre for Infections
Health Protection Agency
61 Colindale Avenue
London
NW9 5HT

Contact Centre for Infections main switchboard: Tel. +44 (0) 20 8200 4400
ACKNOWLEDGEMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Evaluations and Standards Laboratory, Centre for Infections, Health Protection Agency London.

For further information please contact us at:

Standards Unit
Evaluations and Standards Laboratory
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ
E-mail: standards@hpa.org.uk
REFERENCES

