STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

Please note the references are now formatted using Reference Manager software. If you alter or delete text without Reference Manager installed on your computer, the references will not be updated automatically.

Suggested citation for this document:
INDEX

STATUS OF NATIONAL STANDARD METHODS .. 2

INDEX .. 3

AMENDMENT PROCEDURE .. 4

SCOPE OF DOCUMENT .. 5

INTRODUCTION .. 5

 TAXONOMY ... 5
 CHARACTERISTICS ... 5
 PRINCIPLES OF IDENTIFICATION .. 10
 TECHNICAL INFORMATION .. 10

1 SAFETY CONSIDERATION .. 11

2 TARGET ORGANISMS ... 11

3 IDENTIFICATION .. 11

 3.1 MICROSCOPIC APPEARANCE .. 11
 3.2 PRIMARY ISOLATION MEDIA ... 11
 3.3 COLONIAL APPEARANCE ... 11
 3.4 TEST PROCEDURES ... 12
 3.5 FURTHER IDENTIFICATION .. 12
 3.6 STORAGE AND REFERRAL ... 12

4 IDENTIFICATION OF GLUCOSE NON-FERMENTING GRAM-NEGATIVE RODS - FLOWCHART ... 13

5 REPORTING .. 14

 5.1 PRESUMPTIVE IDENTIFICATION ... 14
 5.2 CONFIRMATION OF IDENTIFICATION .. 14
 5.3 MEDICAL MICROBIOLOGIST ... 14
 5.4 CCDC .. 14
 5.5 CFI ... 14
 5.6 INFECTION CONTROL TEAM .. 14

6 REerrals ... 15

 6.1 REFERENCE LABORATORY .. 15

7 ACKNOWLEDGMENTS AND CONTACTS ... 15

REFERENCES .. 16
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/ 02.04.07</td>
<td>1.1</td>
<td>2</td>
<td>All</td>
<td>All</td>
<td>Taxonomy updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>Flow chart</td>
<td>Title changed and flowchart put in to visio format. Contents of flow chart updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>5.3 Medical Microbiologist</td>
<td>Section amended to make it more informative in the work place.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>6 Referrals</td>
<td>Links to reference laboratory user manuals inserted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>References</td>
<td>References reviewed and updated</td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.
IDENTIFICATION OF GLUCOSE NON-FERMENTING GRAM-NEGATIVE RODS

SCOPE OF DOCUMENT

This National Standard Method (NSM) includes the identification of *Pseudomonas* species, *Burkholderia* species and other glucose non-fermenting Gram-negative bacilli that have been associated with human infection. It describes the identification of *Pseudomonas aeruginosa* and *Burkholderia cepacia* complex (Bcc) from selective media, and members of this diverse group of organisms from a variety of primary isolation media.

The bacteria described in this NSM are aerobic and non-sporing. They may oxidise glucose and are catalase-positive. Some species are able to grow anaerobically in the presence of nitrate, and many produce water-soluble pigments.

Colonies on primary isolation media are presumptively identified by colonial morphology, Gram stain, oxidase activity and pigment production. The oxidase reaction is an important discriminatory test. Oxidase positive, glucose non-fermenting, Gram-negative bacilli such as *Pseudomonas aeruginosa* may be termed as “pseudomonads”. Further identification is determined by further phenotypic tests and/or referral to a suitable Reference Laboratory. All identification tests are ideally performed from non-selective agar.

Non-fermenting Gram-negative bacilli are associated with a wide range of infections, predominantly of nosocomial origin. Such infections usually occur in patients with identifiable defects of local and/or systemic immunity. These bacteria can be isolated from a wide variety of environmental sources and can cause infection via contaminated medical devices or “pseudo-infection” due to their survival/growth in blood sampling tubes or laboratory media.

INTRODUCTION

TAXONOMY

The taxonomic status of many strains in this large heterogeneous group of organisms is undergoing continuous revision. Organisms previously classified within the genus *Pseudomonas* (rRNA homology groups I-V) are now divided among the genera *Pseudomonas, Burkholderia, Ralstonia, Comamonas, Brevundimonas* and *Stenotrophomonas*. Many identified strains have no designated species. Commercial identification systems do not provide definitive speciation of many of the clinically significant, glucose non-fermenting Gram-negative bacilli. In clinical situations where precise identification is important for determining optimal therapy, patient prognosis, and appropriate infection control interventions (eg if querying the first isolation of a member of the *Burkholderia cepacia* complex in a respiratory sample from a patient with cystic fibrosis), referral of such an isolate to a Reference Laboratory is usually appropriate.

CHARACTERISTICS

Pseudomonas aeruginosa

P. aeruginosa is the glucose non-fermenting Gram-negative rod most often associated with human infection. It has the characteristic smell of aminoacetophenone. It is a strict aerobe with a growth temperature range of 5°C - 42°C. Most other pseudomonads will not grow at 42°C (with certain exceptions, notably *Burkholderia pseudomallei*). The characteristic blue-green appearance of colonised/infected pus or of an organism culture is due to the mixture of pyocyanin (blue) and pyoverdin (fluorescein, yellow). Production of blue-green pigment is indicative of *P. aeruginosa*. Some strains produce other pigments, such as pyorubin (red) or pyomelanin (brown).
P. aeruginosa can produce at least six colonial types after aerobic incubation on nutrient agar for 24 h at 37°C. The most common, type 1, is that of colonies which are large, low, oval, convex and rough, sometimes surrounded by serrated growth. Colonial variation from one type to another does not necessarily indicate the presence of more than one strain. Many strains exhibit metallic iridescence with colonial lysis. This resembles lysis by bacteriophage, but is not associated with phage activity.

Colonies isolated on Pseudomonas selective or blood agar may be presumptively identified by a positive oxidase reaction and characteristic pigment production as ‘P. aeruginosa’. However, some strains of P. aeruginosa, particularly the mucoid ones, may not produce pyocyanin, as well as displaying a slow oxidase reaction and may therefore require further tests to confirm identification. Colonies isolated on other selective agars (such as Bcc) may be identified by colonial morphology and a commercial identification system. Other species from blood or selective media and strains of P. aeruginosa and B. cepacia complex requiring further characterisation should be identified by a commercial identification system and/or referral to a Reference Laboratory. It should be noted that isolates from cystic fibrosis patients can be atypical/stressed and should be incubated at 30°C or room temperature for 48 hours so that their phenotypic features may reliably be expressed.

Other Pseudomonas species

Infection with such organisms is relatively uncommon. When it does occur it is usually in a patient with compromised immune defence(s) or is associated with a contaminated medical device. However, accurate recognition of the infecting organism can be important as antimicrobial susceptibility varies widely among these organisms. Pseudo-infections have also been reported.

Pseudomonas putida and Pseudomonas fluorescens are members of the fluorescent group of pseudomonads. Unlike P. aeruginosa they are unable to grow at 42°C and do not produce pyocyanin. P. putida can be distinguished from these other two species by its inability to liquefy gelatine.

Pseudomonas stutzeri produces smooth, intermediate and rough colonies (sometimes yellow pigmented) when grown on nutrient agar. The latter can resemble colonies of Burkholderia pseudomallei or Bacillus species.

Pseudomonas alcaligenes and Pseudomonas pseudoalcaligenes are both non-pigmented.

Primary culture for Pseudomonas species should be performed on blood agar and/or Pseudomonas selective agar. Colonial appearance of Pseudomonas species is described in Section 3.3. Clinically significant isolates may need to be referred to the Reference Laboratory for further characterisation.

Burkholderia cepacia complex

Recent research has resulted in a number of changes to the taxonomy of Burkholderia cepacia complex (Bcc). Briefly, nucleotide analysis of recA gene sequences suggests that Bcc consists of nine closely related genomovars. Most of these have now been classified as individual species (B. cepacia, B. multivorans, B. stabilis, B. vietnamiensis, B. ambifaria, B. athina, B. pyrocinia). This is important as certain genomovars/species have been more closely associated with hospital outbreaks and clinical disease in susceptible patients (eg B. cepacia genomovar III and outbreaks of fulminant pneumonitis in CF units). Some Bcc strains may be isolated from contaminated medical devices such as blood gas analysers, nebuliser equipment or disinfectants.

Primary culture for Bcc should be performed on a B. cepacia selective agar. Examples include Burkholderia cepacia selective agar (BCSA), Burkholderia cepacia agar (BCA) (formerly known as Pseudomonas cepacia agar or PCA), and Oxidation-Fermentation Polymyxin Bacitracin Lactose agar (OFPBL). Recent evaluations suggest that BCSA is more selective and grows Bcc colonies more rapidly than the others. All contain antibiotics to improve selectivity. Media should be incubated at 35°C – 37°C for two days. Some strains may appear only if the plates are further incubated at 30°C for up to five days. Colonial appearances vary according to the medium employed. It is important that presumptive isolates of B. cepacia are identified as rapidly as possible to assist in patient management. Bcc can be nitrate negative and ONPG positive. The oxidase reaction of B. cepacia varies in strength. Isolates may become non-viable when stored at ambient temperature or 4°C for several days. Presumptive identification of Bcc from CF patients should first be carried out with a...
commercial identification system, although these remain unreliable for confirmation of Bcc17,18. All first time isolates suspected to be Bcc should therefore be referred to a Reference Laboratory for confirmation of identity, species and genomovar.

Other **\textit{Burkholderia} **species

\textit{Burkholderia mallei} is a Hazard Group 3 pathogen. \textit{B. mallei} is a small non-motile, usually oxidase-negative, Gram-negative bacillus. The bacterial cell may be straight or slightly curved with rounded ends and wavy sides. The bacilli may be arranged singly, in pairs end to end, in parallel bundles or palisades. These organisms are rare and not identifiable with commercial kits.

\textit{Burkholderia pseudomallei} is also a Hazard Group 3 pathogen. However, in contrast, it is a Gram-negative, oxidase-positive, motile bacillus. Collectively they may appear as long bundles, but actually these represent chains of densely packed organisms. In clinical material the staining may be irregular and bipolar staining may be seen. \textit{B. pseudomallei} is nitrate positive and ONPG negative. It is the aetiological agent of melioidosis.

Definitive diagnosis of melioidosis is by positive culture of \textit{B. pseudomallei}, but the results may be obtained too late to influence clinical management. On nutrient agar, rough corrugated colonies resembling \textit{P. stutzeri} may be produced and cultures often have a pearly sheen, although there is considerable colonial variation. Some strains may produce dry and wrinkled colonies whereas others may be frankly mucoid. Usually, the colonies are not coloured, but occasional strains may produce a yellow pigmentation. It grows well at 42°C. Isolates of \textit{B. pseudomallei} are constitutively resistant to polymyxin and aminoglycosides, but susceptible to co-amoxiclav. \textit{P. stutzeri} and \textit{B. pseudomallei} may have similar colonial appearances See http://www.hpa.org.uk/infections/topics_az/deliberate_release/Glanders/Homepage.asp for pictures of the colonies. Suspect colonies should be referred to the Reference Laboratory. Melioidosis may also be diagnosed serologically, although results can be difficult to interpret due to elevated background levels of antibody in endemic areas. \textit{B. pseudomallei} should be considered in patients with pneumonia, septicaemia or abscesses who have a history of travel to south east Asia or northern Australia, particularly those with underlying conditions such as diabetes mellitus.

\textit{Burkholderia gladioli} grows readily on media containing polymyxin. Unlike Bcc they are oxidase-negative and do not oxidise maltose and lactose. \textit{B. gladioli} is occasionally isolated from the respiratory tract of patients with CF but, unlike Bcc, its clinical significance in these patients remains uncertain. Molecular methods may be required to confirm its identity19.

\textit{Stenotrophomonas maltophilia}20

Numerically \textit{S. maltophilia} is the second most commonly isolated glucose non-fermenter in clinical laboratories after \textit{P. aeruginosa}. It may cause a wide range of infections (such as intravascular line-associated bacteraemias and nosocomial pneumonia) in susceptible patients, notably those with an underlying haematological malignancy. However, in other settings isolates often represent superficial colonisation only. \textit{S. maltophilia} is oxidase-negative and motile. It can appear as straight or slightly curved non-sporulating rods. Rare strains may be slowly oxidase-positive. Colonies may appear yellow or green on blood agar. Resistance to imipenem \textit{in vitro} is a useful indicator to suspect \textit{S. maltophilia}. Some strains may produce slight beta-haemolysis. Although growth has been reported to occur between 5°C and 40°C, it is optimal at 35°C. Most commercial identification kits are able to identify the bacterium.

\textit{Acinetobacter} **species**21

Based on DNA-DNA hybridization studies there are now at least 19 different \textit{Acinetobacter} genomic species. Seven of these have been given species names, namely \textit{A. calcoaceticus}, \textit{A. baumannii}, \textit{A. haemolyticus}, \textit{A. junii}, \textit{A. johnsonii}, \textit{A. Iwoffii}, and \textit{A. radioresistens}. In clinical practice \textit{A. baumannii} is most frequently isolated, notably from intensive care units, and is often extensively antimicrobial-resistant. Other more commonly isolated species are \textit{A. calcoaceticus}, \textit{A. Iwoffii}, \textit{A. johnsonii} and \textit{A. haemolyticus}.

IDENTIFICATION OF GLUCOSE NON-FERMENTING GRAM-NEGATIVE RODS

Issue no: 2 Issue date: 02.04.07 Issued by: Standards Unit, Evaluations and Standards Laboratory

Reference no: BSOP ID 1712

This SOP should be used in conjunction with the series of other SOPs

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk
Acinetobacter species are short, Gram-negative rods/coccobacilli, typically 1.0 - 1.5 by 1.5 - 2.5 µm, often becoming coccoïd and appearing as diplococci. They may not readily decolourise on Gram staining and demonstrate variable stain retention, along with pleomorphic variations in cell size and arrangement. Many strains are encapsulated\(^{22}\). Colonies are normally smooth, sometimes mucoid, pale yellow to greyish-white and some environmental strains may produce a diffusable brown pigment. Colony size is similar to that of the Enterobacteriaceae from which they need to be distinguished. *A. lwoffi* and some other species are 0.5µm or less at 24-48 hours. Most strains have an optimum growth temperature of 30°C - 35°C and grow well at 37°C although some are unable to grow at 37°C.

Acinetobacter species are strict aerobes, oxidase-negative, catalase-positive, non-motile and non-fermentative. Some clinical isolates, particularly *Acinetobacter haemolyticus*, may be haemolytic on blood agar. Most commercial identification kits can distinguish *Acinetobacter* species from other non-fermenters and Enterobacteriaceae. However, phenotypic identification methods for individual *Acinetobacter* species can be unreliable – hence clinically or epidemiologically relevant isolates should be referred to a Reference laboratory.

Other non-fermenters

There are many other glucose non-fermenting Gram-negative bacilli that have occasionally been isolated from clinical specimens. They are usually found in association with contaminated medical devices or in patients who are known to be immunocompromised. Some may occasionally be isolated from the respiratory tract of patients with chronic lung infections such as cystic fibrosis or bronchiectasis. It may be difficult to confirm the identity of some of these organisms with commercial identification kits, and molecular identification\(^{23,24}\) may be needed to confirm the organism’s identity. In such cases it may be appropriate to refer these isolates to a Reference Laboratory.

Non-fermenting Gram-negative bacilli isolated occasionally from clinical specimens include:

Achromobacter (Alcaligenes) xylosoxidans

Alcaligenes xylosoxidans was reclassified as *Achromobacter xylosoxidans* in 1998\(^{25}\). It has occasionally been isolated from respiratory secretions of patients with CF\(^{26}\) and has also caused sepsis in other patients who are immunocompromised\(^{27}\). It is both catalase- and oxidase-positive.

Alcaligenes species

Alcaligenes faecalis is the type species\(^{28}\). Colonies have a thin, spreading irregular edge. It is catalase-negative, oxidase-positive and motile.

Bordetella species

For information on *Bordetella* species please see BSOP ID 5 - Identification of *Bordetella pertussis* and *Bordetella parapertussis* from selective agar.

Brevundimonas species

Brevundimonas vesicularis and *Brevundimonas diminuta* grow slowly on ordinary nutrient media\(^{29}\). Unlike *B. diminuta*, *B. vesicularis* gives only a weak oxidase reaction. It forms a carotenoid pigment that produces yellow or orange colonies.

Elizabethkingia species

Elizabethkingia (formerly *Chryseobacterium*) *meningosepticum*, is the species of *Elizabethkingia* most often associated with serious infection. Although rare, it is important to identify the organism as outbreaks may occur in nurseries and the mortality rate has been described as high as 50%\(^{30,31}\). The organism produces very pale yellow pigmented colonies on blood agar that may not be evident at 24 hours (in contrast to the more commonly isolated dark yellow colonies of *E. indologenes*). *E. meningosepticum* is nonmotile and oxidase-positive. It hydrolyses aesculin and gelatin, is positive for the o-nitrophenyl-b-galactopyranoside (ONPG) test, and produces indole. However, the indole
reaction is described as only weakly positive after 48 h incubation at 30°C, and a more robust reaction is observed with inoculation to Brain Heart Infusion broth rather than tryptophan broth. *E. indologenes* is also nonmotile and oxidase-positive\(^32\).

Comamonas species

Comamonas terrigena is the type species. It is motile, oxidase- and catalase- positive. *Comamonas acidivorans* characteristically produces an orange indole reaction due to anthranilic acid rather than indole production from tryptophan.

Methyllobacterium species

Methyllobacterium species colonies grow slowly on blood agar and are dry and appear pink or coral in incandescent light\(^33\). Optimum growth occurs at 25°C - 30°C. The organism is oxidase-positive and motile, but both of these characteristics may be weak. *Methyllobacterium* species are Gram-negative but may stain poorly or show variable results and may be confused with *Rhodococcus* or *Roseomonas* species. It has a characteristic microscopic appearance because individual cells contain large, non-staining vacuoles.

Moraxella species

For information on *Moraxella* species please see BSOP ID 11 - Identification of *Moraxella* species and morphologically similar organisms.

Ochrobactrum species

Ochrobactrum anthropi is urease-positive and aesculin- and ONPG-negative. Colonies are 1 mm in diameter on blood agar after 24 hours incubation and appear circular, low convex, smooth, and shining\(^34\). Mucoid colonies may be produced on some media.

Oligella species

Oligella ureolytica grows slowly on blood agar producing pinpoint colonies after 24 hours and large colonies only after three days incubation. Colonies are white, opaque, entire and non-haemolytic. It is oxidase-positive and motile. *Oligella urethralis* is similar to *Moraxella* and *Acinetobacter* species in that isolates are coccobacillary, oxidase-negative and non-motile.

Psychrobacter species

Psychrobacter immobilis and *Psychrobacter phenylpyruvicus* (previously *Moraxella*) cells are coccoid to short, thick rods which may be vacuolated and stain peripherally. It is oxidase-positive and non-motile. Growth is optimal at 20°C and poor at 37°C.

Ralstonia species

Ralstonia pickettii (formerly *Burkholderia pickettii*) is non-pigmented, oxidase-positive, and will grow at 41°C, but does not attack arginine. It resembles Bcc on selective agar and can be difficult to distinguish from it biochemically\(^35\).

Roseomonas species

Roseomonas species produce red-pink pigment and cells appear as coccoid rods in pairs or short chains or may be mainly cocci with occasional rods\(^16\). Growth on blood agar is pinpoint, pale pink, shiny, raised, and often mucoid after 2 - 3 days' incubation at 35°C - 37°C. They are weakly oxidase-positive or oxidase-negative, catalase-positive and urease-positive. The genus comprises six species of which four are reported to cause infection.
Shewanella species

Shewanella putrefaciens is oxidase-positive and motile. Colonies are distinctive smelling and produce an orange-tan pigment on blood agar.

Sphingobacterium species

They are oxidase-positive and non-motile. Colonies produce yellow pigment. The species isolated most frequently from clinical specimens are *Sphingobacterium multivorum* and *Sphingobacterium spiritivorum*.

PRINCIPLES OF IDENTIFICATION

Isolates from primary culture are identified by colonial appearance, Gram stain, and preliminary tests, which permit the presumptive identification of *P. aeruginosa*. Additional identification may be made using a commercial identification kit.

TECHNICAL INFORMATION

Basic commercial ID systems may be limited in their ability to identify accurately glucose non-fermenters and these organisms can be very time consuming to identify by phenotypic tests. Few systems identify Bcc accurately, and other organisms such as *S. maltophilia* may be misidentified as Bcc. All identification tests should ideally be performed from non-selective agar. It is essential that laboratories follow the manufacturers' instructions when using commercial identification tests. Careful consideration should be given to isolates that give an unusual identification. If confirmation of identification is required, isolates should be sent to the Reference Laboratory.
1 SAFETY CONSIDERATIONS

B. mallei and B. pseudomallei are Hazard Group 3 organisms and suspected isolates and specimens must be handled in a containment level 3 room. If these isolates are submitted to the reference laboratory please contact them in advance.

Refer to current guidance on the safe handling of all organisms documented in this NSM.

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.

The above guidance should be supplemented with local COSHH and risk assessments.

Compliance with postal and transport regulations is essential.

2 TARGET ORGANISMS

Glucose non-fermenting Gram-negative bacilli commonly isolated in the clinical laboratory
- Acinetobacter species
- Burkholderia cepacia complex
- Pseudomonas aeruginosa
- Stenotrophomonas maltophilia

Hazard Group 3 pathogens
- Burkholderia mallei
- Burkholderia pseudomallei

3 IDENTIFICATION

3.1 MICROSCOPIC APPEARANCE

Gram stain (see BSOP TP 39 - Staining procedures)

Gram-negative rods

3.2 PRIMARY ISOLATION MEDIA

Pseudomonas selective agar 16 – 48 h incubation in air at 35°C to 37°C, then at 30°C for up to 5 days.

Burkholderia cepacia selective agar 16 – 48 h incubation in air at 35°C to 37°C, then at 30°C for up to 5 days

Blood or chocolate agar 16 - 48 h incubation in CO₂ at 35°C to 37°C

CLED agar 16 - 48 h incubation in air at 35°C to 37°C

3.3 COLONIAL APPEARANCE

Colonies of B. cepacia complex on Burkholderia cepacia selective agar are 1-2 mm in diameter with the medium turning pink. Candida species, S. maltophilia, R. pickettii, some Pseudomonas species and many other colistin-resistant Gram-negative bacteria may also grow on this medium such as eg A. johnsonii. Consult manufacturer’s guidance regarding appearance on other media.
Colonies of *P. aeruginosa* on *Pseudomonas* selective agar are surrounded by blue-green pigment and fluoresce under short wavelength (254 nm) ultraviolet light.

Colonial morphology

Pigment production

3.4 **TEST PROCEDURES**

Oxidase test (see BSOP TP 26 - Oxidase test)

P. aeruginosa is oxidase-positive. Other glucose non-fermenting rods may be oxidase-positive or -negative as described.

Further identification

Commercial identification kit

3.5 **FURTHER IDENTIFICATION**

Following commercial identification test kit results and/or the Reference Laboratory report.

3.6 **STORAGE AND REFERRAL**

If required, save isolate on blood or nutrient agar slopes or charcoal swabs for referral to the Reference Laboratory.
4 IDENTIFICATION OF GLUCOSE NON-FERMENTING GRAM-NEGATIVE RODS - FLOWCHART

Clinical specimens
Primary isolation plate

Pseudomonas selective agar
Blood agar
(or other primary isolation media)
Burkholderia cepacia selective agar

Typical colonies of GNR at 16 – 48 h (see Sections 3.2 and 3.3)
Burkholderia cepacia complex may require up to 5 days incubation

Pigment production

Blue-green colonies
Oxidase test
Positive
P. aeruginosa growth at 42°C

No blue-green colonies
Oxidase test
Positive

Pink colonies on B. cepacia selective agar
Gram stain of pure culture
Positive
Gram-negative rod

Further identification if clinically indicated
Commercial identification kit or other biochemical identification or send to the Reference Laboratory
If required, save the pure isolate on an agar slope

Other
Discard
5 REPORTING

5.1 PRESumptIVE IDENTIFICATION
If appropriate growth characteristics, colonial appearance, Gram stain of the culture and oxidase results are demonstrated.

5.2 CONFIRMATION OF IDENTIFICATION
Further biochemical tests and/or Reference Laboratory report.

5.3 MEDICAL MICROBIOLOGIST
Inform the medical microbiologist of presumed or confirmed B. mallei and B. pseudomallei isolates.

The medical microbiologist should also be informed if the presumed or confirmed glucose non-fermenting Gram-negative rod is isolated from a sample taken from a normally sterile site, in accordance with local protocols.

If isolated from other site(s) consideration should be given to informing the medical microbiologist in accordance with local protocols, if eg:

- Immuno-compromised patient notably if neutropenic
- Device-associated infection
- Presumed or confirmed Burkholderia cepacia complex isolates from cystic fibrosis patients

The medical microbiologist should be informed if the request card bears relevant information to suggest infection with Burkholderia pseudomallei eg septicaemia, pneumonia, or multi-system disease with abscess formation (and possible outbreaks of same) in association with:

- foreign travel or military service
- laboratory, aid, or agricultural work overseas especially to Queensland (Australia), or South or South East Asia.

Burkholderia mallei may present with somewhat similar clinical features, in association with:

- agricultural/livestock, veterinary or laboratory work overseas, especially in the Middle East and S. America

Follow local protocols for reporting to clinician

5.4 CCDC
Refer to local Memorandum of Understanding

5.5 CFI49
Refer to current guidelines on CDSC and COSURV reporting

5.6 INFECTION CONTROL TEAM
Inform the local infection control team of presumed or confirmed isolates of B. mallei and B. pseudomallei.
6 REFERRALS

6.1 REFERENCE LABORATORY

For information on the tests offered, turn around times, transport procedure and the other requirements of the reference laboratory refer to: [http://www.hpa.org.uk/cfi/dhca iar](http://www.hpa.org.uk/cfi/dhcaiar)

Laboratory of Health Care Association Infection
Centre for Infections
61 Colindale Avenue
London
NW9 5HT

Contact CFI main switchboard: Tel. +44 (0) 20 8200 4400

7 ACKNOWLEDGMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the Standard Methods Working Group for Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Evaluations and Standards Laboratory, Centre for Infections, Health Protection Agency London.

For further information please contact us at:

Standards Unit
Evaluations and Standards Laboratory
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ
[e-mail standards@hpa.org.uk](mailto:standards@hpa.org.uk)
REFERENCES

41. Health and Safety Executive. 5 steps to risk assessment: a step by step guide to a safer and healthier workplace, IND (G) 163 (REVL). Suffolk: HSE Books; 2002.

