IDENTIFICATION OF NEISSERIA SPECIES

BSOP ID 6

Issued by Standards Unit, Evaluations and Standards Laboratory
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

Please note the references are now formatted using Reference Manager software. If you alter or delete text without Reference Manager installed on your computer, the references will not be updated automatically.

Suggested citation for this document:

INDEX

STATUS OF NATIONAL STANDARD METHODS ... 2
INDEX .. 3
AMENDMENT PROCEDURE ... 4
SCOPE OF DOCUMENT .. 5
INTRODUCTION .. 5
TECHNICAL INFORMATION ... 6
1 SAFETY CONSIDERATIONS .. 7
2 TARGET ORGANISMS .. 7
3 IDENTIFICATION ... 8
 3.1 MICROSCOPIC APPEARANCE ... 8
 3.2 PRIMARY ISOLATION MEDIA .. 8
 3.3 COLONIAL APPEARANCE .. 8
 3.4 TEST PROCEDURES ... 8
 3.5 FURTHER IDENTIFICATION .. 8
 3.6 STORAGE AND REFERRAL .. 12
4 IDENTIFICATION OF NEISSERIA SPECIES - FLOW CHART 13
5 REPORTING ... 14
 5.1 PRESUMPTIVE IDENTIFICATION ... 14
 5.2 CONFIRMATION OF IDENTIFICATION ... 14
 5.3 MEDICAL MICROBIOLOGIST ... 14
 5.4 CCDC ... 14
 5.5 CENTRE FOR INFECTIONS ... 15
 5.6 INFECTION CONTROL STAFF ... 15
6 REFERRALS .. 15
 6.1 REFERENCE LABORATORY ... 15
7 ACKNOWLEDGMENTS AND CONTACTS ... 16
REFERENCES ... 17
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/11/09/07</td>
<td>2</td>
<td>2.1</td>
<td>1</td>
<td>Front Page</td>
<td>Northern Ireland logo added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>PDF links inserted to cross-reference NSM documents</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td>Introduction</td>
<td>Technical information added and Taxonomy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>4</td>
<td>Flowchart in Visio format</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>Referrals</td>
<td>Amended and link added</td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.
IDENTIFICATION OF NEISSERIA SPECIES

SCOPE OF DOCUMENT

This National Standard Method (NSM) describes the identification of pathogenic Neisseria species isolated from clinical specimens and their differentiation from non-pathogenic Neisseria species and the related genera of Moraxella and Kingella. The identification of these two genera is covered in BSOPID 11 - Identification of Moraxella Species and Morphologically Similar Organisms.

INTRODUCTION

Taxonomy

The genus Neisseria belongs to the family Neisseriaceae. The genus consists of N. gonorrhoeae and N. Meningitidis, which are of clinical significance, and several non-pathogenic species.

Characteristics of Neisseria and related organisms

Neisseria species

Neisseria species are obligate human pathogens with no other natural host. They are Gram-negative cocci, 0.6 - 1.0 μm in diameter, occurring singly but more often in pairs with adjacent sides flattened. They are non-motile and flagella are absent. Some species produce a greenish-yellow carotenoid pigment and may be nutritionally fastidious and haemolytic. The optimum growth temperature is 35°C - 37°C. Neisseria are oxidase-positive and catalase-positive (except Neisseria elongata). All except Neisseria gonorrhoeae and Neisseria canis reduce nitrite.

The clinically important species of Neisseria species (Neisseria gonorrhoeae, Neisseria meningitidis, Neisseria lactamica, Neisseria cinerea and Moraxella catarrhalis) are relatively easy to identify from the non pathogenic Neisseria. N. gonorrhoeae and N. meningitidis are the two main pathogens of the group. The other species of Neisseria such as N. lactamica, N. cinerea and M. catarrhalis are generally considered commensals, but have been implicated as causes of infection in patients who are immuno-compromised.

Moraxella species

Moraxella species may be rods or cocci. The rods are often very short and plump, resembling a coccus shape and are usually 1.0 - 1.5 x 1.5 - 2.5 μm in size. Cells occur in pairs and short chains with one plane of division. The cocci are smaller, 0.6 - 1.0 μm in diameter and occur as single cells or in pairs with adjacent sides flattened. Differing planes of division sometimes result in tetrads. Cells may be capsulate. Moraxella species are Gram-negative with a tendency to resist decolourisation. Flagella are absent. Some strains may grow weakly under anaerobic conditions. Most species except Moraxella osloensis are nutritionally fastidious. The optimum growth temperature is 33°C - 35°C. Moraxella species are usually catalase-positive and no acid is produced from carbohydrates. All Moraxella species are oxidase-positive.

Kingella species

Kingella species are straight rods, 1.0 μm in length, often in pairs or short chains. Endospores are not formed. Cells are Gram-negative but there is a tendency to resist decolourisation. They are non-motile. Growth is aerobic or facultatively anaerobic and the optimum growth temperature is 33°C - 37°C. Two types of colony are produced on blood agar: a spreading, corroding type with twitching motility; and a smooth convex type, which does not show twitching motility. Kingella are oxidase-positive, but may give a weak or negative reaction with tetramethyl-p-phenylenediamine. They are catalase-negative and urease-negative. Glucose and some other carbohydrates are utilised with acid production. Kingella may be mis-identified as Neisseria because they are Gram-negative rods which are often arranged in pairs, oxidase positive and may grow on GC selective agar.
Principles of identification

Isolates from primary culture are identified by Gram stain, oxidase and by at least two of the following identification principles: carbohydrate utilisation, detection of preformed enzymes or reactivity with immunological reagents.

TECHNICAL INFORMATION

N/A
1 SAFETY CONSIDERATIONS

Hazard Group 2 organisms
Suspected isolates of *N. meningitidis* should always be handled in a microbiological safety cabinet.

N. meningitidis is in Hazard Group 2 although in some cases the nature of the work may dictate full Containment Level 3 conditions.

N. meningitidis causes severe and sometimes fatal disease. Laboratory acquired infections have been reported. The organism infects primarily by the respiratory route. An effective vaccine is available for some meningococcal serogroups.

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet, isolator or be otherwise suitably contained.

Refer to current guidance on the safe handling of all Hazard Group 2 organisms documented in this NSM.

The above guidance should be supplemented with local COSHH and risk assessments. Compliance with postal and transport regulations is essential.

2 TARGET ORGANISMS

The main *Neisseria* species reported to have caused human infection

N. gonorrhoeae
N. meningitidis
N. lactamica
N. sicca

Other species may be associated with human diseases

N. subflava
N. cinerea,
N. canis,
N. elongata subspecies *nitroreducens*
N. mucosa.

Species which may be misidentified as *Neisseria* species

Moraxella catarrhalis * *
Kingella denitrificans * *

Moraxella species which have been isolated from clinical specimens

M. atlantae * *
M. catarrhalis * *
M. lacunata * *
M. nonliquefaciens * *
M. osloensis * *
M. phenylpyruvica *

Kingella species which have been isolated from clinical specimens

K. denitrificans *
K. indologenes *
K. kingae *
Asaccharolytic *Neisseria* species which may be misidentified as *N. gonorrhoeae* or *N. meningitidis*

- *N. canis*
- *N. caviae*
- *N. cinerea*
- *N. cuniculi*
- *N. elongate*
- *N. flavescens*
- *N. ovis*

*Species reported to have caused human infection

3 IDENTIFICATION

3.1 MICROSCOPIC APPEARANCE

Gram stain (see BSOPTP 39 - Staining Procedures)

Neisseria species are Gram-negative cocci arranged in pairs with long axes parallel.

3.2 PRIMARY ISOLATION MEDIA

GC selective agar incubated for up to 48 hours in 5 - 10% CO₂ at 35°C - 37°C. For maximum isolation rates plates should be left for 72 hours if possible.

GC selective agar usually consists of GC agar base supplemented with lysed or chocolatised horse blood with or without the addition of VitoX or IsoVitaleX. Antibiotic cocktails used for selection contain vancomycin or lincomycin, colistin, trimethoprim, and nystatin or amphotericin.

Whole Blood agar/heated blood (chocolate) incubated for 18 - 48 hours in 5 - 10% CO₂ at 35°C - 37°C. These media usually consist of Columbia agar base supplemented with 5% horse blood or chocolatised horse blood.

3.3 COLONIAL APPEARANCE

The species of *Neisseria* (which sometimes grow on non-selective medium) are usually pigmented and opaque. However, both *N. gonorrhoeae* and *N. meningitidis* form smooth, round, moist, uniform grey/brown colonies with a greenish colour underneath on primary isolation medium. *N. gonorrhoeae* may grow poorly on blood agar when the medium is very fresh or the number of bacteria present in the sample is especially high. As with all bacterial culture, the quality of the sample determines the quality of the isolates.

3.4 TEST PROCEDURES

Oxidase test (see BSOPTP 26 - Oxidase Test)

Oxidase-positive: *Neisseria* species and *Kingella* species and *M. catarrhalis*

3.5 FURTHER IDENTIFICATION

Neisseria species can be differentiated from similar organisms by biochemical and other tests. At least two principles of identification should be used as there are very few taxonomic differences between members of the genus and therefore definitive identification can prove problematic.

3.5.1 NEISSERIA GONORRHOEAE

IDENTIFICATION OF NEISSERIA SPECIES

Issue no: 2.1 Date 11.09.07 Issued by Standards Unit, Evaluations and Standards Laboratory Page 8 of 18

Reference no: BSOP ID 6/2.1

This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk
\textit{N. gonorrhoeae} is sexually transmitted, primarily causing infection of the anogenital tract and is always considered a pathogen. This contrasts with \textit{N. meningitidis} which colonises the upper respiratory tract as a commensal and occasionally invades to cause systemic disease.

\textit{Neisseria} have a typical Gram-negative envelope, which consists of a cytoplasmic membrane, a thin layer of peptidoglycan and an outer membrane. Many of the major antigens of the cell envelope are shared between \textit{N. gonorrhoeae} and \textit{N. meningitidis}, with the exception of the capsule which is never expressed by \textit{N. gonorrhoeae} but, when expressed by \textit{N. meningitides}, enhances survival in the blood.

Identification of \textit{N. gonorrhoeae}

There are two approaches that can be taken to confirm the identity of \textit{N. gonorrhoeae} and eliminate other \textit{Neisseria} species.

1. The use of gonococcal specific antibodies, which confirms \textit{N. gonorrhoeae} alone.
2. The use of carbohydrate utilisation tests17, with or without the detection of preformed enzymes such as the aminopeptidases and β-galactosidase, which will give the full speciation of the organism.

Identification tests available:

Carbohydrate utilisation

Traditionally identity has been confirmed by detecting the acidification of glucose-containing media, but not those containing maltose, sucrose or lactose. This is an oxidative and not a fermentative process. It is important that the basal medium is carbohydrate-free (if serum sugars are used, the serum should be checked for maltase activity). The inoculated plates or bottles are incubated in 5 - 10\% CO\textsubscript{2} for twenty four hours with the caps loosened and are then allowed to stand on the bench for 30 min to allow any acidification due to dissolved CO\textsubscript{2} to dissipate. There are disadvantages to this method in that it is slow and requires a heavy, pure growth of gonococci. Some meningococci metabolise maltose slowly and may require at least two days for acidification of the conventional test system, and some gonococci can be slow to utilize glucose. Several commercial systems are available for the rapid detection of carbohydrate utilisation.

Preformed enzymes

Detection of aminopeptidases, gamma-glutamyl transferase and proline iminopeptidase together with β-galactosidase, with chromogenic substrates allows identification to species level. Reagents are available as commercial kits. This can be a useful alternative to the approaches above, but should only be used on strains isolated on selective media, as certain non-pathogenic \textit{Neisseria} give similar reactions to those that are given by \textit{N. gonorrhoeae}. However, \textit{N. gonorrhoeae} that have a mutation in the proline iminopeptidase gene and therefore appear negative for this enzyme are prevalent in England and Wales and kits that detect solely the production of aminopeptidases should not be used alone18,19.

Carbohydrate and preformed enzymes combined

Many of the commercial kits that test for carbohydrate utilization also include aminopeptidases. \textit{N. gonorrhoeae} that are proline iminopeptidase negative will give anomalous results with these kits and should be confirmed with an immunological reagent.
Immunological

Identification by immunological means can be achieved using antibodies linked to fluoroscein or a staphylococcal protein A or latex. These commercially available reagents contain a mixture of monoclonal antibodies raised to specific epitopes on the major outer membrane protein, Por. Because the reagents contain a mixture of antibodies rather than a single antibody to a cross-reactive epitope, false negative reactions do occur, although uncommonly. Because the mixtures themselves are different occasional isolates occur that give a false negative with one, but are positive with another reagent.

Approaches to identification of N. gonorrhoeae

Identification should be achieved by a combination of test procedures which both identify the organism and exclude other Neisseria species. N. gonorrhoeae is usually isolated from high risk patients, where it is only necessary to perform presumptive identification followed by a single confirmatory test. However, in low risk patients and in child and sexual abuse (medicolegal) cases it is necessary to use more than one confirmatory test.

Presumptive identification

There are four minimum criteria that all isolates of N. gonorrhoeae should meet:

1. Growth on media selective for pathogenic Neisseria species.

 Note: If the Neisseria gonorrhoeae strain in question is sensitive to vancomycin it will fail to grow on this medium.

2. Appropriate colonial morphology on such media.

3. Typical Gram stain morphology (Gram negative diplococci).

4. Oxidase-positive.

- High Risk: Patients attending for sexual health care such as GUM patients (high prevalence populations)

Patients considered to be high risk should have both genital samples and non genital samples (rectal and pharyngeal) tested. One, preferably two, additional tests are required for the confirmation of isolates from genital samples where the Gram stain and oxidase on the specimen has given a presumptive diagnosis of infection with N. gonorrhoeae. These should be either biochemical or immunological. Any isolates that give a negative result with an immunological test should be tested in addition with a biochemical test that detects carbohydrate utilisation with/without aminopeptidases to eliminate the possibility of an aminopeptidase negative N. gonorrhoeae.

- Low Risk: Patients attending primary care (low prevalence populations) 20-22

It is recommended that for isolates from patients considered low risk (but with out medico-legal implications) two additional tests should be used for confirmation following presumptive identification. These should be biochemical and immunological. Biochemical kits should not include those that detect aminopeptidases alone, but can be those kits that include both carbohydrates and aminopeptidases.

- Medicolegal : Child or sexual abuse 21,22

In Medicolegal cases the Sexually Transmitted Bacteria Reference Laboratory (STBRL) recommend that isolates should be identified by satisfying the minimum criteria and three additional tests; biochemical, immunological and molecular (molecular tests should be referred to STBRL).

In medicolegal patients, sufficient specific tests must be undertaken to ensure, as far as possible, that the identification is robust enough to withstand close scrutiny in a court of law.
Identification by means of at least one or two confirmatory tests should be carried out at the initial laboratory. This should be followed by confirmation of the identification by the Reference Laboratory as a sensible additional precaution. Isolates should be stored in a viable state at least until a final report is received from the Reference Laboratory in case posted isolates die or are lost. If results are to be used in forensic evidence the ‘chain of evidence’ must be shown to be intact. The chain of evidence is a formal record of the specimen’s progress from point of collection of the sample to the issue of the final report. This should include a fully documented (time, date, place and signatures) chain of persons handling the sample and performing and interpreting the tests, and in addition it should record the conditions of the specimen’s storage.

Molecular methods carried out at STBRL include in-house methods to detect *N. gonorrhoeae* specific DNA by amplification of *cppB* and *ompIII* genes for identification and genotyping by means of NG-MAST23-25.

Susceptibility testing26

Most laboratories perform susceptibility testing on all isolates of *N. gonorrhoeae* by means of disc testing following the British Society of Antimicrobial Chemotherapy (BSAC) guidelines. It is recommended that each antimicrobial agent used for therapy should be tested. It should be noted that if nalidixic acid is used to screen for ciprofloxacin resistant isolates that the occasional nalidixic acid susceptible, ciprofloxacin resistant isolate of *N. gonorrhoeae* has been detected. An alternative method, which is useful for laboratories testing only a few isolates, is the E-test method using ciprofloxacin.

Any isolates that show decreased susceptibility to the third generation cephalosporins, ceftriaxone or cefixime or azithromycin should be referred to STBRL for confirmation.

3.5.2 *NEISSERIA MENINGITIDIS*

For information on screening for Meningococci see **BSOP 51 - Screening for Meningocci**.

Growth of *Neisseria meningitidis* from a normally sterile site such as CSF (cerebrospinal fluid) or blood is considered definitive for the diagnosis of meningococcal disease27. At case presentation it is generally recommended that two samples are taken, one for microbiological culture and one for PCR (DNA-based detection) where meningococcal disease is suspected. Samples of CSF received in microbiology laboratories from suspected cases of meningitis are routinely tested for cell counts (and differential counts) often followed by Gram staining to achieve rapid confirmation. The lack of sensitivity of microscopy and an increase in the preadmission administration of antibiotics reduce the chances of positive microscopy or culture. This has increased the importance of DNA-based detection methods such as PCR. Latex agglutination, although useful in some cases, is not as sensitive as PCR assay for the confirmation and serogroup characterisation of meningococci. The HPA Meningococcal Reference Unit offers a PCR testing service to confirm meningococcal disease case and determine accurate serogroup characterisation to inform England and Wales epidemiology. DNA-based assays also allow further molecular subtyping if required.

Invasive disease with *Neisseria meningitidis* is generally associated with specific serogroups. Meningococcal strains are carried asymptptomatically in the oro- and nasopharynx and are often isolated from urogenital sites in both men and women. Apart from resistance to sulfonamides (not used in therapy), meningococci remain susceptible to the antibiotics classically used for treatment and chemoprophylaxis. Since 1985 a decrease in susceptibility to penicillin has been observed due to changes in penicillin protein binding sites. Reduced susceptibility is ascribed to organisms with penicillin MICs \(\geq 0.1 \) mg/L: care should be taken not to infer resistance because meningococci are clinically responsive to the therapeutic levels attained in patients. Some extremely rare strains of meningococci have been identified as harbouring beta-lactamase producing plasmids. Resistance to rifampicin is sometimes observed following chemoprophylaxis of case contacts and this may occasionally be observed in secondary case clusters. Due to the nature of the infection it is very important that laboratories obtain accurate resistance data both for treatment and epidemiological purposes.
This is best achieved locally by use of E-tests28. Staff need to be trained in their use for valid results to be obtained. It is also expected that all isolates will have undergone wider disc sensitivity testing to confirm susceptibility to locally used therapeutic agents.

Once an isolate has been identified using the method outlined in 3.0, confirmation of the isolate is made in the following way;

- Biochemical testing kit. It is important to note that a number of glucose and maltose negative meningococci have been reported17
- Rapid biochemical commercial kit
- Characterisation where it is required to serogroup level would normally involve a commercial latex kit or slide agglutination reagents. The latex agglutination kits are designed for direct use on CSF or serum, but will also work for cultures. Slide agglutinating sera are for use on cultures only. Heated clinical samples or formalin treated suspensions of cultures should be processed within microbiological safety cabinets to reduce aerosols

Differentiation of \textit{N. meningitidis} from similar phenotypes

\textit{N. meningitidis} can be identified by acid production from glucose and maltose but not from lactose or sucrose, and by the production of gamma-glutamylaminotransferase. Maltose-negative strains of \textit{N. meningitidis} have been described and may be differentiated from \textit{N. gonorrhoeae} by their ability to produce gamma-glutamylaminotransferase. Glucose negative variants of \textit{N. meningitidis} may also be observed.

3.5.3 **OTHER NEISSERIA SPECIES**

These can be identified by use of commercially available kits that have been validated. The accuracy of these kits has not been fully determined for species other than \textit{N. gonorrhoeae} and \textit{N. meningitidis} and therefore all results obtained should be treated with caution.

3.6 **STORAGE AND REFERRAL**

Short term storage – isolates should be kept in a viable state on heated blood (chocolate) agar slopes.

Long term storage – isolates should be frozen at -20°C to -80°C.
IDENTIFICATION OF NEISSERIA SPECIES - FLOW CHART

Clinical specimens
Primary isolation plate

GC selective agar

N. gonorrhoeae and N. meningitidis are smooth round, moist, uniform greybrown colonies with a greenish colour in the agar underneath at 48h

Whole Blood/Heated Blood (chocolate) agar

Colonial appearance varies according to species
N. gonorrhoeae grows poorly on whole blood agar in some cases

Oxidase test (BSOP TP 26)

Positive

Neisseria species, M. catarrhalis
Consider Kingella species (catalase-negative)
Oligella species

Gram stain

Gram-negative cocci arranged in pairs

Perform tests from the following*
Carbohydrate degradation reactions
Enzyme substrate tests
Immunological tests
(may be a commercial kit)

*Please refer to the rest of the document for more detailed instructions regarding tests to use.

Negative

Not Neisseria species
5 REPORTING

5.1 PRESUMPTIVE IDENTIFICATION

N. gonorrhoeae

If appropriate growth characteristics, colonial appearance, Gram stain of the culture and oxidase.

N. meningitidis

If appropriate growth characteristics, colonial appearance, Gram stain of the culture, oxidase and serology results are demonstrated.

There are four minimum criteria that all isolates of *Neisseria* should meet:

1. Growth on media selective for pathogenic *Neisseria* species.

 Note: If the *Neisseria gonorrhoeae* strain in question is sensitive to vancomycin it will fail to grow on this medium.

2. Appropriate colonial morphology on such media.

3. Exhibit typical Gram stain morphology (Gram-negative diplococci).

4. Oxidase-positive.

5.2 CONFIRMATION OF IDENTIFICATION

Using biochemical/immunological results following identification processes as outlined in this document and/or Reference Laboratory report.

5.3 MEDICAL MICROBIOLOGIST

Inform the medical microbiologist of all presumptive and confirmed *N. meningitidis* isolates, and of all *Neisseria* species isolated from normally sterile sites, or in cases of invasive infection.

The medical microbiologist should also be informed if the request card bears relevant information eg:

- Cases of meningitis, septicaemia (especially with purpuric rash)
- Investigation of *N. meningitidis* outbreak, or of the carrier state

Inform the medical microbiologist of all presumptive and confirmed *N. gonorrhoeae* isolates, and of all *Neisseria* species from:

- Minors
- Cases of sexual assault, rape or abuse
- All persons not known to be attending a Genitourinary Medicine clinic
- Extragenital sites (eg throat, anorectum because special care is indicated with identification procedures)

Follow local protocols for reporting to clinician

5.4 CCDC

Refer to local Memorandum of Understanding.
5.5 **CENTRE FOR INFECTIONS**

Refer to current guidelines on CDSC and COSURV reporting.

5.6 **INFECTION CONTROL STAFF**

Inform the infection control team of presumptive and confirmed isolates of *N. meningitidis*

6 **REFERRALS**

6.1 **REFERENCE LABORATORY**

Sexually Transmitted Bacteria Reference Laboratory (STBRL)
Health Protection Agency
Centre for Infections
61 Colindale Avenue
London
NW9 5HT
Tel.+44 (0) 20 8327 6464
http://www.hpa.org.uk/cfi/stbrl/default.htm

Meningococcal Reference Unit (MRU)
Manchester Medical Microbiology Partnership
PO Box 209
Clinical Sciences Building 2
Manchester Royal Infirmary
MANCHESTER
M13 9WZ
Tel.+44 (0) 0161 276 6757
7 ACKNOWLEDGMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). We would like to thank Professor Cathy Ison of the Sexually Transmitted Bacteria Reference Laboratory (STBRL) and Stephen Gray of the Meningococcal Reference Unit (MRU) for their significant contributions. The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are also acknowledged.

The National Standard Methods are issued by the Standards Unit, Evaluations and Standards Laboratory, Centre for Infections, Health Protection Agency London.

For further information please contact us at:

Standards Unit
Evaluations and Standards Laboratory
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ
e-mail standards@hpa.org.uk
REFERENCES

