IDENTIFICATION OF PASTEURELLA SPECIES AND MORPHOLOGICALLY SIMILAR BACTERIA

BSOP ID 13

Issued by Standards Unit, Evaluations and Standards Laboratory
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation's logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

Please note the references are now formatted using Reference Manager software. If you alter or delete text without Reference Manager installed on your computer, the references will not be updated automatically.

Suggested citation for this document:
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Controlled document reference</th>
<th>BSOP ID 13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled document title</td>
<td>Identification of Pasteurella species and morphologically similar bacteria</td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/14/07/2007</td>
<td>2</td>
<td>2.1</td>
<td>1</td>
<td>Front Page</td>
<td>Northern Ireland logo added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>4 Flow chart</td>
<td>Title changed and flowchart put in to visio format. Contents of flow chart updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>5.3 Medical Microbiologist</td>
<td>Section amended to make it more informative in the work place.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>6 Referrals</td>
<td>Links to reference laboratory user manuals inserted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>References</td>
<td>References reviewed and updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>All</td>
<td>PDF links inserted to cross- reference NSM documents</td>
</tr>
</tbody>
</table>

IDENTIFICATION OF PASTEURELLA SPECIES AND MORPHOLOGICALLY SIMILAR BACTERIA
Issue no: 2.1 Issue date: 17.09.07 Issued by: Standards Unit, Evaluations and Standards Laboratory Page 4 of 12
Reference no: BSOP ID 13i2.1
This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency
www.evaluations-standards.org.uk
Email: standards@hpa.org.uk
IDENTIFICATION OF PASTEURELLA SPECIES AND MORPHOLOGICALLY SIMILAR BACTERIA

SCOPE OF DOCUMENT

This National Standard Method (NSM) describes the procedure for the phenotypic identification of Pasteurella species and distinguishes these from morphologically similar species.

INTRODUCTION

Taxonomy

Currently some 15 - 20 species are included in the genus Pasteurella. Not all of these are true members. DNA-DNA hybridisation indicates that some of the species are more closely related to the genus Actinobacillus.

Pasteurella multocida is the type species of the genus.

Characteristics

Pasteurella species are spherical, ovoid or rod-shaped cells 0.3 - 1.0 µm in diameter and 1.0 - 2.0 µm in length. Cells are Gram-negative, and occur singly, or in pairs or short chains. Bipolar staining may be seen and capsules may be present. All species are non-motive, and are facultatively anaerobic.

Pasteurella species have both an oxidative and fermentative metabolism. The optimum growth temperature is 37°C. Glucose and other carbohydrates are catabolised with the production of acid but no gas. Most species are catalase-positive and oxidase-positive; nitrates are reduced to nitrites by almost all species.

Colonies of Pasteurella species are usually grey and viscous, with a strong mucinous odour. Rough, irregular colonies may also occur. Freshly isolated strains of Pasteurella haemolytica produce clear zones of ß-haemolysis on blood agar – this organism is a cause of mastitis and septicaemia in some peridomestic animals, but very rarely infects humans.

Pasteurella and Actinobacillus species are so similar that no single phenotypic feature reliably distinguishes between the two genera. In clinical practice, however, an organism with characteristics corresponding to the genus Pasteurella is highly likely to be so if recovered from clinical specimens in association with a bite from a cat or dog.

The genus Actinobacillus now includes Actinobacillus ureae – formerly Pasteurella ureae. A. ureae is thought to be a commensal or occasionally an opportunistic pathogen of human beings, and has principally been reported in connection with disease of the respiratory tract (eg cases of pneumonia, lung abscess). Occasionally, invasive infections (bacteraemia, meningitis) have also been reported.

As the name suggests, A. ureae is urease positive. Most species of Pasteurella are urease negative (including P. multocida). Thus, a Pasteurella–like organism, urease positive, recovered in association with human respiratory tract disease, is likely to be A. ureae.

Phenotypically, Pasteurella species may resemble Haemophilus species – but Pasteurella species will not regularly exhibit satellitism around colonies of Staphylococcus species, nor are they regularly auxotrophic for X or V factors; growth is not especially enhanced by use of chocolate blood agar.

Principles of identification

Colonies on blood agar are identified by colonial morphology, Gram stain, oxidase test and catalase production. Additional tests are needed for confirmation and/or isolates should be referred to the Reference Laboratory.
TECHNICAL INFORMATION

N/A
1 SAFETY CONSIDERATIONS

Refer to current guidance on the safe handling of all organisms documented in this NSM.

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.

The above guidance should be supplemented with local COSSH and task specific risk assessments.

Compliance with postal and transport regulations is essential.

2 TARGET ORGANISMS

Pasteurella species reported to have caused human infection

- *P. aerogenes*
- *P. bettayae*
- *P. canis*
- *P. dagmatis*
- *P. multocida* subspecies *gallicida*
- *P. multocida* subspecies *multocida*
- *P. multocida* subspecies *septica*
- *P. pneumotropica*
- *P. stomatis*
- *P. trehalosi* (previously *P. haemolytica* biotype T)
- *Avibacterium gallinarum* (formerly *P. gallinarum*)
- *Mannheimia haemolytica* (formerly *P. haemolytica* (Biotype A))

3 IDENTIFICATION

3.1 MICROSCOPIC APPEARANCE

Gram stain (see BSOPTP 29 - Staining Procedures)

Spherical, ovoid or rod-shaped Gram-negative cells which occur singly or in pairs or short chains. Bipolar staining is common. Capsules may be present.

3.2 PRIMARY ISOLATION MEDIA

Blood agar 16 – 48 h incubation in 5 - 10% CO₂ at 35°C - 37°C.

3.3 COLONIAL APPEARANCE

Colonies are grey and viscous but rough irregular colonies occur frequently. (Freshly isolated strains of *M. haemolytica* produce clear zones of β-haemolysis on blood agar).

3.4 TEST PROCEDURES

Oxidase test (see BSOPTP 26 - Oxidase Test)

Positive (almost always)

Catalase test (see BSOPTP 8 - Catalase Test)

Positive

Growth on CLED or MacConkey

No growth (*P. multocida*) on MacConkey but can grow poorly on some CLED agars.

Sensitivity to penicillin

A zone of inhibition around a 1U penicillin disc may aid differentiation from other Gram-negative bacilli.

Commercial identification kit
3.5 **FURTHER IDENTIFICATION**
Following use of a commercial characterisation kit and/or referral to a Reference Laboratory.

3.6 **STORAGE AND REFERRAL**
If required save pure isolate on a blood agar slope for referral to the Reference Laboratory.
IDENTIFICATION OF PASTEURELLA SPECIES AND MORPHOLOGICALLY SIMILAR BACTERIA - FLOWCHART

Clinical specimens
Primary isolation plate

Blood Agar

Pasteurella species are grey, viscous, rough, irregular, non-haemolytic colonies on blood agar
M. haemolytica is β-haemolytic on blood agar
No growth on CLED (*P. multocida*)

Gram stain on pure culture
Gram-negative rods or coccobacilli
If there is a different Gram-stain appearance refer to the appropriate NSM

Oxidase test

Positive
Possible *Pasteurella* species

Negative
Not *Pasteurella* species
NB *P. balteus* is oxidase negative

Catalase
(All oxidase & catalase reactions may be weak)

Positive
Possible *Pasteurella* species

Negative
Not *Pasteurella* species
NB *P. trehalosi* is catalase negative

A zone of inhibition to Penicillin

Sensitive
Possible *Pasteurella* species

Resistant
Possible *Pasteurella* species

Commercial identification system
(If clinically indicated)
5 RESULTS

5.1 PRESumptive IDENTIFICATION
If appropriate growth characteristics, colonial appearance and Gram stain of the culture are demonstrated.

5.2 CONFIRMATION OF IDENTIFICATION
N/A

5.3 MEDICAL MICROBIOLOGIST
The medical microbiologist should be informed of presumptive or confirmed *Pasteurella* species if isolated from a specimen from a normally sterile site or from other specimens in accordance with local protocols.

Follow local protocols for reporting to clinician.

5.4 CCDC
Refer to local Memorandum of Understanding.

5.5 CENTRE FOR INFECTIONS15
Refer to current guidelines on CDSC and COSURV reporting.

5.6 INFECTION CONTROL STAFF
N/A

6 REFERRALS

6.1 REFERENCE LABORATORY
For information on the tests offered, turn around times, transport procedure and the other requirements of the reference laboratory refer to:
http://www.hpa.org.uk/cfi/lhcai/default.htm

Laboratory of Healthcare Associated Infection
Centre for Infections
Health Protection Agency
61 Colindale Avenue
London
NW9 5HT
Contact Centre for Infections main switchboard: Tel. +44 (0) 20 8200 4400
7 ACKNOWLEDGMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Evaluations and Standards Laboratory, Centre for Infections, Health Protection Agency London.

For further information please contact us at:
Standards Unit
Evaluations and Standards Laboratory
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ
E-mail: standards@hpa.org.uk
REFERENCES

