INVESTIGATION OF SPECIMENS FOR LEGIONELLA SPECIES

BSOP 47

Issued by Standards Unit, Department for Evaluations, Standards and Training
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation's logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

The reader is informed that all taxonomy in this document was correct at time of issue.

Suggested citation for this document:
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>6/ 09/11/2009</td>
<td>4.1</td>
<td>5</td>
<td>2</td>
<td>Status of NSMs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>Taxonomy sentence inserted</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>References updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>Department name changed from ESL to DEST</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>2</td>
<td>Technical Information / Limitations</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2</td>
<td>1.2 Specimen transport and storage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4.4.1 Pre-treatment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Link to user manuals and request forms inserted</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>New section inserted with flowchart</td>
<td></td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.
INVESTIGATION OF SPECIMENS FOR LEGIONELLA SPECIES

Types of specimens:
- Bronchial/tracheal aspirate
- Bronchoalveolar lavage
- Lung biopsy/tissue
- Pleural fluid
- Sputum
- Transtracheal aspirate

SCOPE OF DOCUMENT

This National Standard Method describes the culture procedures for the isolation of Legionella species from clinical specimens except blood. For blood specimens see BSOP 37 – Investigation of blood cultures (for organisms other than Mycobacterium species).

INTRODUCTION

Currently, the Legionellaceae family comprises 48 species and in excess of 60 serogroups. In the UK most (95%) Legionella infections are caused by Legionella pneumophila principally serogroup 1. Legionella species are widely distributed in nature and are found in aquatic environments, both natural (eg rivers, lakes) and man-made aquatic reservoirs such as wet cooling towers and water distribution systems. Legionella species are nutritionally fastidious, requiring L-cysteine and iron for growth, and are commonly found in the presence of other microorganisms including protozoa and amoebae, which support their growth.

Legionellosis refers to the clinical syndromes produced by infection with organisms of the genus Legionella. These embrace Legionnaires’ disease, Pontiac fever (a self limiting flu-like illness) and other less common clinical manifestations. Legionnaires’ disease, the most serious manifestation of Legionella species infection, was first recognised in 1976 following the investigation of a large outbreak of pneumonia (221 cases with 34 fatalities) amongst delegates attending an American Legion Convention at a hotel in Philadelphia, USA. The causative organism was subsequently identified and named as Legionella pneumophila, and was isolated from autopsy lung specimens taken from affected individuals.

Clinical characteristics of Legionella infections

Transmission is by inhalation of an aerosol of the organism, either from an environmental source or occasionally iatrogenically following a respiratory tract manipulation such as humidification or nebulisation of infected material.

Pneumonia – The most common manifestation of Legionella infections. Severity varies from mild to severe, life-threatening disease. Onset is usually abrupt with pyrexia, myalgia, headache and non-productive cough following, commonly, a 2-10 day incubation period. The incubation time has been found to be as long as 20 days in some cases involving whirlpool baths and spas. Watery diarrhoea may be present and neurological symptoms ranging from mild headache to encephalopathy may also occur. Chest X-rays show pulmonary infiltrates progressing to consolidation often with pleural effusion.

Pontiac fever/non-pneumonic disease – Is an acute febrile illness occurring 24 – 48 hours after exposure to any species, but particularly to L. pneumophila, Legionella feelei, Legionella micdadei and Legionella anisa. Superficially, the disease resembles influenza and is usually self-limiting, without pneumonic involvement. It has been found that children have a shorter incubation period than adults and display symptoms such as earache and rashes, whereas common symptoms in adults included fever, dizziness, headaches, fatigue, arthralgia and abdominal pain. Legionella species have not been isolated from cases by culture and the disease is diagnosed serologically or by urinary antigen detection.
Risk factors predisposing to legionellosis

Factors that have been shown to predispose to Legionella infection include cigarette smoking, chronic lung disease, increasing age, immunosuppression and surgery. Transplant patients are at particularly high risk. In general, most cases of Legionella that are reported in the UK are associated with recent travel abroad, particularly to Mediterranean holiday resorts. However, reports in 2006 showed that the majority of cases were acquired within the UK. Clusters of cases may occur and all suspected cases should be reported to the local Health Protection Unit, and the relevant representative who leads the investigation is the local CCDC.

Isolation of Legionella species

Isolation of the organism is the definitive method of diagnosis of Legionnaires’ disease. Culture is reported as being slightly more sensitive than immunofluorescent techniques and is highly specific (>99%). The fastidious nature of Legionella species makes special media and selective techniques essential for optimum isolation. Culture should be performed whenever possible because of the importance of epidemiological investigations in establishing the source in an outbreak.

Heavily contaminated specimens may be processed to remove contaminants by a variety of methods. Heat treatment and specimen dilution are the simplest to perform and the recommended methods for clinical specimens. Two temperature/time combinations may be used for decontamination. They are 50°C for 30 minutes or 60°C for 1-3 minutes. As the volume of the specimen and the container dimensions affect the time required to heat to 60°C, heating to 50°C is simpler to control. This NSM therefore recommends that heat decontamination is performed at 50°C for 30 minutes. Other methods of decontamination include acid treatment (which is mainly used for environmental samples).

Plate cultures should be examined using a low power binocular microscope and oblique incident lighting to demonstrate the typical ground glass, iridescent colonial appearance.

Sputum with squamous cell contamination may be positive for L. pneumophila so specimens should be processed regardless of purulence.

Detection of urinary antigen

Urinary antigen (UrAg) detection is a very convenient method of diagnosing Legionnaires’ disease. Antigen becomes detectable soon after onset of symptoms and the test may remain positive for several weeks, even after other tests have become negative. Antigen detection is a highly specific method (>99%) of diagnosing legionellosis if caused by serogroup 1, its sensitivity being similar to that of culture (80-85%). The majority of UrAg-positive cases have been found to be a result of infection from L. pneumophila serogroup 1. Equivocal EIA results should be examined by a second person and repeated for serogroup 1.

Note: The UrAG test may not be appropriate in cases of nosocomial or atypical pneumonia.

Direct or indirect Immunofluorescence microscopy

Immunofluorescence microscopy may be used for the demonstration of organisms in clinical material. Direct fluorescent antibody (DFA) microscopy is a rapid method for the detection of Legionella. Smears of almost any type of lower respiratory tract specimen are appropriate for this type of test. Anti-L. pneumophila antibody (preferably a monoclonal antibody reactive against all serogroups) labelled with fluorescent dye is applied to the smear, the antibody binding to any L. pneumophila present. These tagged organisms may then be visualised by fluorescence microscopy.

The indirect fluorescent antibody test (IFAT) is a two-stage test, first incubating the smear with a hyperimmune antiserum and washing, then applying a fluorescein-isothiocyanate-conjugated (FITC) immunoglobulin.
Factors to consider with immunofluorescent techniques are:

- Sensitivity can be affected by the area of the well used for the smear
- Appropriate controls are essential
- A negative result may not exclude infection
- Detection of a minimum of five fluorescing rods are required to report a positive result
- Cross reactions with other bacteria have been reported

Compared with culture, the immunofluorescent techniques are relatively insensitive (25-70%)\(^{32,33}\). However, provided an experienced microbiologist performs the test meticulously, specificities have been reported to be as high as 95%\(^{32,33}\).

Antibody detection

Antibody detection, traditionally the most widely used technique for diagnosis\(^{34}\), has now largely been displaced by urinary antigen testing. However, it is still a useful test in outbreak investigations or to establish a diagnosis retrospectively including for Pontiac fever. Paired sera showing a four-fold rise in titre, or the detection of *L. pneumophila* antigen in urine are diagnostic of Legionnaires’ disease. A single high titre in combination with a suggestive clinical history affords a presumptive diagnosis of Legionnaires’ disease\(^{33}\). Techniques include a latex agglutination screening test, an IFA test and enzyme immunoassays (EIA)\(^{35-37}\). Cross-reactions with antibodies to *Campylobacter* species, *Pseudomonas* species and other bacteria can occur\(^{18,19,38,39}\).

TECHNICAL INFORMATION/ LIMITATIONS

Besides supporting the growth of *Legionella* species, the primary isolation media should also be suitable for use with contaminated specimens and be stable during storage. The basic medium employed is charcoal yeast extract (CYE) supplemented with 1% N-(2-acetamido)-2-aminoethanesulfonic acid (ACES) buffer, ferric pyrophosphate, L-cysteine hydrochloride and \(\alpha\)-ketoglutarate (BCYE). Various agents (listed) have been added to produce a range of selective media.

- Buffered cefamandole, polymyxin, anisomycin, \(\alpha\)-ketoglutarate medium (BMPA \(\alpha\))\(^{40}\)
 - Cefamandole
 - Polymyxin B
 - Anisomycin

- Buffered charcoal yeast extract, anisomycin agar (BCYEA)\(^3\)
 - Polymyxin B
 - Cefamandole
 - Anisomycin
 - Vancomycin

BMPA\(\alpha\) is recommended for clinical specimens, although there have been reports of cefamandole\(^{40}\) being inhibitory to some *Legionella* species. Vancomycin sensitive strains have also been detected. Enrichment and antibiotic supplements are available commercially. Primary isolation plates are incubated at 35-37°C for up to 10 days in a moist atmosphere. Care should be taken to ensure that the medium has sufficiently cooled before adding supplements, as *Legionella* media are particularly heat susceptible.

This NSM describes the laboratory diagnostic procedure of culture only for the demonstration of *Legionella* species in clinical material. For the detection of antigen and antibody in urine and in serum refer to the manufacturers’ instructions for the commercially available kits.
In National Standard Methods, the term “CE marked leak proof container” is used to describe containers bearing the CE marking and which are used for the collection and transport of clinical specimens. The requirements of the EU in vitro Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) state that such devices must “reduce as far as possible contamination of, and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes”.

1 SAFETY CONSIDERATIONS

1.1 SPECIMEN COLLECTION
N/A

1.2 SPECIMEN TRANSPORT AND STORAGE
CE Marked leak proof container in a sealed plastic bag.

1.3 SPECIMEN PROCESSING
All respiratory specimens for culture must be processed in a microbiological safety cabinet in a Containment Level 3 room.

Prior to staining, fix smears by placing the slide on an electric hotplate (65 to 75°C) under the hood, until dry. Then place in a rack or other suitable holder.

Note: Heat-fixing may not kill all Mycobacterium species

Centrifugation must be carried out in sealed buckets which are subsequently opened in a microbiological safety cabinet.

Specimen containers must be placed in a suitable holder

Tissues and biopsies
Homogenisation of all specimens must be undertaken in a microbiological safety cabinet.
Wherever possible, the use of sterile scissors is recommended in preference to a scalpel blade.

The above guidance should be supplemented with local COSHH and risk assessments.

2 SPECIMEN COLLECTION

2.1 OPTIMAL TIME FOR SPECIMEN COLLECTION
Before antimicrobial therapy when possible

Culture for Legionella species may still be successful after antimicrobial therapy has started.

2.2 CORRECT SPECIMEN TYPE AND METHOD OF COLLECTION
Specialist collection according to local protocols.

Note: Sputum specimens should be processed regardless of purulence.

2.3 ADEQUATE QUANTITY AND APPROPRIATE NUMBER OF SPECIMENS
Bronchoalveolar lavage (BAL): as large a volume as possible

Pleural fluid: preferably at least 1 mL

Sputum: preferably at least 1 mL

Tissue and biopsies: specimens should ideally be large enough to carry out all microscopic preparations and cultures.

Consideration should be given to use of chain of evidence forms in view of the potential for legal action in the event of infection with Legionella species.
3 SPECIMEN TRANSPORT AND STORAGE

3.1 TIME BETWEEN SPECIMEN COLLECTION AND PROCESSING
Specimens should be transported and processed as soon as possible.

3.2 SPECIAL CONSIDERATIONS TO MINIMISE DETERIORATION
If processing is delayed, refrigeration for up to 48 h is preferable to storage at ambient temperature. Delays of over 48 h are undesirable

Tissue and biopsies
If specimen is small place it in sterile water to prevent desiccation.

Note 1: This would not be appropriate for specimens undergoing processing for diagnosis by molecular methods

Note 2: Avoid the use of saline, as it is known to be inhibitory to *Legionella* species.

It is recommended that all specimens of tissue and biopsy from suspected cases of legionellosis are stored at -20°C, until the final report is issued, as overgrowth with non-legionella bacteria may necessitate retesting of the original specimen

4 SPECIMEN PROCESSING

4.1 TEST SELECTION
N/A

4.2 APPEARANCE
N/A

4.3 MICROSCOPY

4.3.1 STANDARD
N/A

4.3.2 SUPPLEMENTARY
Fluorescent staining technique

Homogenised specimens

Using a sterile pipette place one drop of homogenised specimen (see Section 4.4.1) on to a clean PTFE microscope slide

Spread the drop with a sterile loop to make a thin smear for fluorescent staining

Tissues and biopsies

Using sterile scissors or a scalpel blade, cut the tissue to give a clean fresh surface

Scrape the blade across the surface to create a slurry of cellular tissue

Prepare a thin smear of this material on a microscope slide for fluorescent staining

Fluids and BAL

Using a sterile pipette place one drop of centrifuged deposit (see Section 4.4.1) on to a clean microscope slide

Spread the drop with a sterile loop to make a thin smear for fluorescent staining
Direct and indirect immunofluorescence

Note 1: Include a positive and a negative control, and a known positive specimen (if possible) in every batch

Note 2: Care must be taken to prevent the transfer of bacilli from the positive control to the test slides which would result in false positive reactions

Follow kit manufacturers’ instructions

Examine under a high power objective (X40)

Examine the control slide first. If fluorescence is satisfactory examine the test specimens

4.4 **CULTURE AND INVESTIGATION**

4.4.1 **PRE-TREATMENT**

Standard

Sputum

Add an equal volume of dithiothreitol (0.1% in phosphate buffer)

Agitate gently for approximately 10 secs

Incubation at 35-37°C for approximately 15 mins followed by gentle agitation for approximately 15 secs will assist homogenisation.

Inoculate plates directly with 0.1 mL of digested sputum

Bronchoalveolar lavages

Centrifuge at a minimum of 2000 x g for 15 mins. Use the deposit as the inoculum

For other respiratory tract specimens select any milky or bloodstained portion, if present, for use as the inoculum

Fluids

Centrifuge in a sterile, capped, conical-bottomed container at a minimum of 2000 x g for 15 mins

Using a sterile pipette transfer all but 0.5 mL of the supernatant to another CE Marked leak proof container in a sealed plastic bag for additional testing if required (eg virology)

Resuspend the deposit in the remaining fluid

Tissue/biopsy

Tissues may be homogenised in sterile water using a sterile tissue grinder (Griffiths tube or preferably an unbreakable alternative)

Supplementary

Heavily contaminated specimens should be heat-treated and diluted to decrease the numbers of yeasts, pseudomonads and *Proteus* species and then recultured

Heat treatment

Place the specimens in a water bath at 50 +/- 1°C for 30 +/- 5 mins (or 60°C for 1-3 mins)

Note: Prolonged heating will reduce recovery
Culture both the heated and unheated specimens

Dilution
Dilute the original specimen 1:100 in distilled water and reculture

Urine for antigen detection
Refer to kit manufacturers’ instructions

Positive urine samples should be forwarded to the Reference Laboratory for confirmatory testing. A sample should be retained at -20°C in the event that re-testing may be required because of legal action (take care to ensure preservations of the chain of evidence)

4.4.2 SPECIMEN PROCESSING
Inoculate each agar plate with specimen (see QSOP 52 – Inoculation of culture media)

For the isolation of individual colonies, spread inoculum with a sterile loop

Whenever possible include a positive control plate

4.5 CULTURE, MEDIA CONDITIONS AND ORGANISMS FOR ALL SPECIMENS

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Standard media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp °C</td>
<td>Atmos % CO₂</td>
<td>Time</td>
</tr>
<tr>
<td>When requested Pneumonia</td>
<td>Legionella</td>
<td>35-37</td>
<td>2.5 % CO₂</td>
<td>10 days at 3, 5, 7 and 10 days</td>
</tr>
</tbody>
</table>

4.6 IDENTIFICATION
4.6.1 MINIMUM LEVEL IN THE LABORATORY
Legionella to genus level

4.6.2 REFERRAL TO REFERENCE LABORATORY
For information on the tests offered, turn around times, transport procedure and the other requirements of the Reference Laboratory click here for user manuals and request forms.

Isolates with unusual or unexpected resistance and whenever there is a laboratory or clinical problem or anomaly that requires elucidation should be sent to the appropriate Reference Laboratory.

Legionella species obtained from clinical material must be referred for identification and serogrouping

All specimens testing positive for urinary antigen should be sent to the Reference Laboratory for confirmation

4.7 ANTIMICROBIAL SUSCEPTIBILITY TESTING
N/A

5 REPORTING PROCEDURE
5.1 MICROSCOPY
Immunofluorescence
Legionella pneumophila detected by immunofluorescence or
Legionella pneumophila not detected by immunofluorescence

Microscopy reporting time

Urgent microscopy results to be telephoned or sent electronically

Written report, 16 – 72 h

5.2 CULTURE

Positives

Legionella species isolated

Negatives

Legionella species not isolated

Culture reporting time

Urgent culture results to be telephoned or sent electronically

Written report 3 - 10 days stating, if appropriate, that a further report will be issued

5.3 URINE FOR ANTIGEN DETECTION

Positives

Legionella antigen detected

Negatives

Legionella antigen not detected

5.4 ANTIMICROBIAL SUSCEPTIBILITY TESTING

N/A

6 REPORTING TO THE HPA (LOCAL AND REGIONAL SERVICES AND CENTRE FOR INFECTIONS)

Individual NSMs on organism identification

Health Protection Agency publications:

“Laboratory Reporting to the Health Protection Agency. Guide for diagnostic laboratories”

"Hospital infection control: Guidance on the control of infection in hospitals"

Local guidelines

Report all isolates of Legionella species
7 ACKNOWLEDGEMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Department for Evaluations, Standards and Training, Centre for Infections, Health Protection Agency, London.

For further information please contact us at:

Standards Unit
Department for Evaluations, Standards and Training
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ

E-mail: standards@hpa.org.uk
APPENDIX

1. Prepare specimens from patients with pneumonia (when requested)

2. Legionella selective agar

3. Incubate at 35-37°C
 2.5% CO₂ (moist air)
 10 d
 Read at 3, 5, 7 and 10 d

4. *Legionella* species
 Refer to BSOP ID 18
REFERENCES

INVESTIGATION OF SPECIMENS FOR LEGIONELLA SPECIES

Issue no: 5 Issue date 09.11.09 Issued by: Standards Unit, Department for Evaluations, Standards and Training Page 16 of 19

Reference no: BSOP 475

This NSM should be used in conjunction with the series of other NSMs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk

47. Health Services Advisory Committee. Safety in Health Service laboratories. Safe working and the prevention of infection in clinical laboratories and similar facilities. 2nd ed. Suffolk: HSE Books; 2003.

The requirements of the EU in vitro Diagnostic Medical Devices Directive48 (98/79/EC Annex 1 B 2.1) state that such devices must “reduce as far as possible contamination of, and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes”.