IDENTIFICATION OF ANAEROBIC ACTINOMYCES SPECIES

BSOP ID 15

Issued by Standards Unit, Department for Evaluations, Standards and Training
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions1.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

The reader is informed that all taxonomy in this document was correct at time of issue.

Suggested citation for this document:

Please note the references are now formatted using Reference Manager software. If you alter or delete text without Reference Manager installed on your computer, the references will not be updated automatically.
INDEX

INDEX.. 3

AMENDMENT PROCEDURE... 4

IDENTIFICATION OF ANAEROBIC ACTINOMYCETES SPECIES... 5

SCOPE OF DOCUMENT ... 5

INTRODUCTION .. 5

 TAXONOMY .. 5
 CHARACTERISTICS ... 5
 PRINCIPLES OF IDENTIFICATION ... 6

TECHNICAL INFORMATION/LIMITATIONS ... 6

1 SAFETY CONSIDERATIONS ... 7

2 TARGET ORGANISMS ... 7

 2.1 ACTINOMYCES SPECIES REPORTED TO HAVE CAUSED HUMAN INFECTION 7

3 IDENTIFICATION .. 7

 3.1 MICROSCOPIC APPEARANCE ... 7
 3.2 PRIMARY ISOLATION MEDIA .. 7
 3.3 COLONIAL APPEARANCE .. 8
 3.4 TEST PROCEDURES .. 9
 3.5 CONFIRMATION .. 9
 3.6 STORAGE AND REFERRAL ... 9

4 IDENTIFICATION FLOW CHART .. 9

5 RESULTS AND REPORTING .. 10

 5.1 PRESumptIVE IDENTIFICATION .. 10
 5.2 CONFIRMATION OF IDENTIFICATION .. 10
 5.3 MEDICAL MICROBIOLOGIST .. 10
 5.4 CCDC ... 10
 5.5 CENTRE FOR INFECTIONS .. 10
 5.6 INFECTION CONTROL STAFF ... 10

6 REFERRALS .. 10

 6.1 REFERENCE LABORATORY .. 10

7 ACKNOWLEDGEMENTS AND CONTACTS.. 11

REFERENCES .. 12
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.
IDENTIFICATION OF ANAEROBIC ACTINOMYCES SPECIES

SCOPE OF DOCUMENT
This National Standard Method (NSM) describes the identification of anaerobic Actinomyces species. Colonies may be isolated on blood agar or egg containing media. For aerobic Actinomyces see BSOPID 10 – Identification of aerobic Actinomycetes species.

INTRODUCTION
Taxonomy
The nomenclature of the group comprising the Actinomyces species is complicated. Considerable morphological diversity is not only seen within genera but also among strains of the same taxon.

Characteristics
Actinomyces species require enriched culture (such as brain-heart infusion medium) and growth is enhanced by an atmosphere with 6 - 10% added carbon dioxide. The optimum growth temperature is 37°C. Colonies may appear after 3 - 7 days of incubation but detection may require 10 to 14 days incubation. Colonies are described often as ‘molar tooth’ colonies on agar and ‘breadcrumb’ colonies suspended in broth media. They appear as Gram-positive bacilli.

Nocardia species are morphologically indistinguishable from Actinomyces species on Gram - staining and also clinically resemble Actinomyces in that they produce chronic infections of the lung and CNS. Nocardia species are aerobic and some strains are partially acid fast.

Actinomyces species are frequently isolated from clinical specimens in mixed culture with Actinobacillus actinomycetemcomitans, Eikenella corrodens and species of Fusobacterium, Bacteroides, Capnocytophaga, Staphylococcus, Streptococcus and Enterococcus.

The pathogenic Actinomyces species do not exist freely in nature (eg in soil) but are commensals usually involved in mixed oral or cervicofacial, thoracic, pelvic, and abdominal infections. Certain species (A. viscosus and A. naeslundii) are involved in periodontal disease and dental caries. There is no person to person transmission.

Propionibacterium propionicum may produce actinomycosis-like disease. Actinobaculum species., Arcanobacterium species. and Varibaculum cambriense are closely related to Actinomyces species and may be involved in human infections.

Actinomyces israelii
Cells appear fine, filamentous, branching and beaded rods. Colonies are white, molar tooth or breadcrumb, pitting/adherent to agar, may be very gritty. Slow growing. Grows poorly or not at all in air and air and CO₂. Generally isolated from classic actinomycosis, canaliculitis, IUCDs and other soft tissue abscesses and bone infections.

Actinomyces gerencseriae
Formerly A. israelii serotype II. Cells, colonies, growth and sources similar to A. israelii but colonies are very white and not so gritty.

Actinomyces meyeri
Cells are small diphtheroids. Colonies <1 mm, white, convex, smooth, entire. No growth in air or air and CO₂. Isolated from pleural fluids, brain abscesses and other soft tissue abscesses.

Actinomyces georgiae
Similar to *Actinomyces odontolyticus* but non-pigmented (white). Grows poorly or not at all in air and air and CO₂. Part of oral flora. Uncommon in clinical specimens.

Actinomyces turicensis
Cells are small coccobacilli. Colonies <1 mm grey/translucent, shiny/smooth, covex, entire. Grows in air and CO₂ but poorly or not at all in air.

Actinomyces radingae
Cells grow similarly to *A. turicensis*.

Principles of Identification
The isolation of colonies anaerobically on blood agar, followed by identification via biochemical tests using the latest taxonomic tables and molecular methods.

TECHNICAL INFORMATION/LIMITATIONS
Commercial kits, although useful in providing basic biochemical information for these pathogens, can not be relied upon for accurate identification using their codes because their databases contain out of date information. This is particularly true as molecular techniques enable more species to be identified than was previously possible.
1 SAFETY CONSIDERATIONS

Refer to current guidance on the safe handling of all organisms documented in this NSM.

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.

The above guidance should be supplemented with local COSHH and risk assessments. Compliance with postal and transport regulations is essential.

2 TARGET ORGANISMS

2.1 ACTINOMYZES SPECIES REPORTED TO HAVE CAUSED HUMAN INFECTION

Actinomyces israelii (facultatively anaerobic)
Actinomyces naeslundii
Actinomyces funkei
Actinomyces europaeus
Actinomyces graevenitzii
Actinomyces urogenitalis
Actinomyces odontolyticus
Actinomyces viscosus
Actinomyces meyeri (rarely isolated)
Actinomyces gerencseriae
Actinomyces neuii (former CDC coryneform group 1)
Actinomyces radingae (former CDC coryneform group E)
Actinomyces turicensis (former CDC coryneform group E)

Other species may be associated with human disease

Actinomyces radicidentis
Actinomyces cardiffensis
Actinomyces oricola
Actinomyces nasicola

3 IDENTIFICATION

3.1 MICROSCOPIC APPEARANCE

Gram stain (BSOP TP 39 - Staining Procedures)

Branching, beaded, filamentous or diphtheroid-shaped or cocco-bacillary Gram-positive bacilli.

N.B. Propionibacterium species are pleomorphic bacilli that may appear to branch.

3.2 PRIMARY ISOLATION MEDIA

1) Fastidious anaerobe agar or equivalent without neomycin – many Actinomyces species may be inhibited by neomycin. Incubate anaerobically at 35-37 C for 5-10 days.

2) Actinomyces selective agar with metronidazole 10 mg/L and nalidixic acid 30 mg/L. Incubate anaerobically at 35-37 C for 5-10 days.

Growth in air and in air plus 5-10% CO₂ is variable. Broth enrichment is rarely beneficial.

N.B: Some species may require longer incubation.
3.3 Colonial appearance

<table>
<thead>
<tr>
<th>Species</th>
<th>Colonies</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. israelii</td>
<td>White to cream, breadcrumb or molar tooth, gritty, pitting</td>
<td>Slow growing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Old colonies may become pink</td>
</tr>
<tr>
<td>A. gerensceriae</td>
<td>Bright white, breadcrumb or molar tooth, pitting and softer than A. israelii</td>
<td>Slow growing</td>
</tr>
<tr>
<td>A. naeslundii</td>
<td>White, cream or pinkish, smooth, convex, entire edged</td>
<td>Occasional rough forms occur</td>
</tr>
<tr>
<td>A. odontolyticus</td>
<td>Cream-to-red, smooth, convex, entire edged</td>
<td>Old colonies may be dark brown</td>
</tr>
<tr>
<td>A. meyeri</td>
<td>Small, white, smooth, convex, entire edged</td>
<td>Slow growing</td>
</tr>
<tr>
<td>A. deticolens like</td>
<td>White to pink, heaped or molar tooth, pitting</td>
<td></td>
</tr>
<tr>
<td>A. georgiae</td>
<td>White or cream, smooth, convex, entire edged</td>
<td></td>
</tr>
<tr>
<td>A. neuii sub sp. neuii and anitratius</td>
<td>White or cream, smooth, convex, entire edged</td>
<td></td>
</tr>
<tr>
<td>A. radingae</td>
<td>Grey-to-white, semi-translucent, smooth, low convex, entire edge</td>
<td></td>
</tr>
<tr>
<td>A. turicensis</td>
<td>Grey, semi-translucent, smooth, low convex, entire edge</td>
<td></td>
</tr>
<tr>
<td>A. europaeus</td>
<td>Whitish, semi-translucent, smooth, low convex, entire edged</td>
<td></td>
</tr>
<tr>
<td>A. graevenitzii</td>
<td>White pronounced molar tooth or smooth, convex</td>
<td>Red fluorescence. Rough and smooth forms occur together. Old colonies may become dark brown</td>
</tr>
<tr>
<td>A. radicidentis</td>
<td>Cream-to-pink, smooth, convex, entire edged</td>
<td>Old colonies may become dark brown</td>
</tr>
<tr>
<td>A. urogenitalis</td>
<td>Cream-to-pink, with darker rings, smooth</td>
<td>Old colonies may become dark brown</td>
</tr>
<tr>
<td>A. funkei</td>
<td>Grey, semi-translucent, opaque centre (fried-egg), low convex, entire edge</td>
<td></td>
</tr>
<tr>
<td>A. cardiffensis</td>
<td>Cream-to-pink, smooth, convex, entire edged</td>
<td></td>
</tr>
<tr>
<td>A. nasicola</td>
<td>White or grey, smooth, convex, entire edged</td>
<td></td>
</tr>
<tr>
<td>A. oricola</td>
<td>White, breadcrumb, pitting</td>
<td></td>
</tr>
<tr>
<td>P. propionicum</td>
<td>Off-white to buff, breadcrumb, gritty, pitting, or smooth, convex, entire edged</td>
<td>Red fluorescence. Rough and smooth forms occur together</td>
</tr>
</tbody>
</table>
3.4 **TEST PROCEDURES**

Preliminary tests

Actinomyces species are inherently resistant to metronidazole and are spot-indole negative. **N.B. Propionibacterium acnes** (a common skin commensal) is indole positive.

Colonies of *A. graevenitzii* and *Propionibacterium propionicum* on blood-containing media fluoresce red under long-wave (366 nm) UV illumination.

Commercial identification kit

Results should be interpreted with caution and in conjunction with other test results. In order to achieve accurate results with biochemical tests it is advisable to use taxonomic keys and not rely on the identification given by the code.

3.5 **CONFIRMATION**

Amplified rDNA Restriction Analysis

16S rDNA PCR and sequence

Other more specialized tests:

Gas liquid chromatography

3.6 **STORAGE AND REFERRAL**

If required, save the pure isolate on a blood agar slope incubated anaerobically, in anaerobic broth culture or and transport swab for referral to the Reference Laboratory.

4 **IDENTIFICATION FLOW CHART**

N/A
5 RESULTS AND REPORTING

5.1 PRESUMPTIVE IDENTIFICATION
If appropriate growth characteristics, colonial appearance and Gram’s stain of the culture are demonstrated and the isolate is metronidazole non-susceptible.

5.2 CONFIRMATION OF IDENTIFICATION
Following commercial identification kit results and/or the Reference Laboratory report.

5.3 MEDICAL MICROBIOLOGIST
Inform the medical microbiologist of presumptive or confirmed anaerobes when the request card bears relevant information

5.4 CCDC
Refer to local Memorandum of Understanding

5.5 CENTRE FOR INFECTIONS
Refer to current guidelines on CDSC and COSURV reporting.

5.6 INFECTION CONTROL STAFF
N/A

6 REFERRALS

6.1 REFERENCE LABORATORY
Anaerobe Reference Unit
NPHS Microbiology Cardiff
University Hospital of Wales
Heath Park
Cardiff CF14 4XW

Telephone +44 (0) 29 2074 2171 or 2378
http://www.hpa.org.uk/cfi/arl/default.htm
7 ACKNOWLEDGEMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Department for Evaluations, Standards and Training, Centre for Infections, Health Protection Agency, London.

For further information please contact us at:

Standards Unit
Department for Evaluations, Standards and Training
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ

E-mail: standards@hpa.org.uk
REFERENCES

