NATIONAL STANDARD METHOD

INVESTIGATION OF GENITAL TRACT AND ASSOCIATED SPECIMENS

BSOP 28
Issued by Standards Unit, Evaluations and Standards Laboratory
Specialist and Reference Microbiology Division
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions¹.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

Suggested citation for this document:

INDEX

STATUS OF NATIONAL STANDARD METHODS ... 2

INDEX .. 3

AMENDMENT PROCEDURE ... 4

SCOPE OF DOCUMENT .. 5

INTRODUCTION ... 5

SEXUALLY TRANSMISSABLE INFECTIONS ... 5

VAGINAL INFECTIONS (OTHER THAN STIs) .. 8

OTHER INFECTIONS OF THE FEMALE GENITAL TRACT 11

INFECTIONS (OTHER THAN STIs) OF THE MALE GENITAL TRACT 14

1.0 SAFETY CONSIDERATIONS .. 16

1.1 SPECIMEN COLLECTION ... 16

1.2 SPECIMEN TRANSPORT AND STORAGE .. 16

1.3 SPECIMEN PROCESSING ... 16

2.0 SPECIMEN COLLECTION ... 16

2.1 OPTIMAL TIME OF SPECIMEN COLLECTION ... 16

2.2 CORRECT SPECIMEN TYPE AND METHOD OF COLLECTION 16

2.3 ADEQUATE QUANTITY AND APPROPRIATE NUMBER OF SPECIMENS 17

3.0 SPECIMEN TRANSPORT AND STORAGE .. 17

3.1 TIME BETWEEN SPECIMEN COLLECTION AND PROCESSING 17

3.2 SPECIAL CONSIDERATIONS TO MINIMISE DETERIORATION 17

4.0 SPECIMEN PROCESSING .. 18

4.1 TEST SELECTION .. 18

4.2 APPEARANCE ... 18

4.3 MICROSCOPY ... 18

4.4 CULTURE AND INVESTIGATION ... 19

4.5 IDENTIFICATION .. 26

4.6 ANTIBIOTIC SUSCEPTIBILITY TESTING ... 26

5.0 REPORTING PROCEDURE .. 27

5.1 MICROSCOPY ... 27

5.2 CULTURE ... 28

5.3 ANTIBIOTIC SUSCEPTIBILITY TESTING ... 28

6.0 REPORTING TO THE HPA (LOCAL AND REGIONAL SERVICES AND CDSC CENTRE FOR INFECTIONS) ... 28

REFERENCES .. 30
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Controlled document reference</th>
<th>BSOP 28</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controlled document title</td>
<td>Standard Operating Procedure for the investigation of genital tract and associated specimens</td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.

<table>
<thead>
<tr>
<th>Amendment Number/Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>5/03.05.05</td>
<td>4</td>
<td>4.1</td>
<td>1</td>
<td>Front page</td>
<td>Redesigned</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Status of document</td>
<td>Reworded</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>Amendment page</td>
<td>Redesigned</td>
</tr>
</tbody>
</table>
STANDARD OPERATING PROCEDURE FOR THE INVESTIGATION OF GENITAL TRACT AND ASSOCIATED SPECIMENS

Types of specimens: High vaginal swab (HVS), vaginal discharge, vulval swab, labial swab, cervical swab, endocervical swab, penile swab, urethral swab and semen
Aspirates from: Bartholin’s gland, fallopian tube, tubo-ovarian abscess, Pouch of Douglas fluid, genital ulcer swab, intra-uterine contraceptive device (IUCD), products of conception and screening swabs for N. gonorrhoeae

SCOPE OF DOCUMENT

This SOP describes the examination of genital specimens for the presence of Neisseria gonorrhoeae, yeasts, β-haemolytic streptococci and other specific target organisms (including Trichomonas vaginalis), and the microscopic diagnosis of bacterial vaginosis (BV).

INTRODUCTION

Appropriate specimens are often difficult to obtain, particularly from women, and incorrect or sub-optimal specimens are often received. It is important to avoid contamination with faecal flora during collection of specimens.

This SOP is laid out under the following headings:

Sexually transmitted infections (STIs)
Vaginal infections other than STIs
Other infections of the female genital tract
Infections (other than STIs) of the male genital tract

SEXUALLY TRANSMISSABLE INFECTIONS

A range of sexually transmissible organisms cause infections responsible for a large number of clinical syndromes. When a specific STI is diagnosed, it is recommended to screen for other infections. Screening has a role in helping to control gonorrhoea, syphilis, chlamydial infection, and human immunodeficiency virus (HIV) infection.

Gonorrhoea1,2
N. gonorrhoeae causes a wide spectrum of clinical syndromes in men, women and neonates infants.

Local gonococcal infections in men most commonly present as symptomatic urethritis with a purulent urethral discharge and dysuria. The most common complication of this is acute epididymitis and, in rare cases, gonococcal urethritis can be complicated by gonococcal cellulitis, penile lymphangitis, or periurethral abscess.

Proper specimen collection is important to ensure optimal yield. The best specimen is expressed urethral exudate. In asymptomatic men a urethral swab is taken.
Local gonococcal infections in women primarily affect the cervix. Gonococcal cervicitis is often asymptomatic, but it can cause an increased vaginal discharge, genital itching or dysuria. The urethra is frequently involved in women who have had a hysterectomy. The most important complication of gonococcal infection in women is pelvic inflammatory disease (PID), which may lead to infertility. Endocervical or urethral swabs are the preferred specimens.

Anorectal gonorrhoea may be an asymptomatic complication in women with cervical gonorrhoea. Women and homosexual men who participate in receptive anal intercourse with infected partners are at risk of developing anorectal gonorrhoea. Most men with anorectal gonorrhoea are asymptomatic though some develop symptomatic proctitis. Homosexually active men with symptomatic proctitis can be infected with a variety of other pathogens. Rectal specimens may be taken to seek *N. gonorrhoeae, Chlamydia trachomatis* and viruses.

Asymptomatic mucosal infection can occur at any mucosal site such as the urethra, cervix, rectum and pharynx. Such infections are detected by screening patients presenting with appropriate histories, symptoms and signs suggesting exposure. Throat swabs are taken for screening for *N. gonorrhoeae* if there is a history of orogenital contact.

Disseminated gonococcal infection (DGI) is a rare complication of gonorrhoea. This presents with one or more of the following:

- arthralgia (joint pain)
- asymmetric polyarthritis
- rash (often pustular)
- myalgia (muscle pain)
- septic arthritis
- tenosynovitis (inflammation of a tendon sheath)

In most cases of DGI, mucosal infection is present but can be asymptomatic. All potential mucosal sites should be screened for *N. gonorrhoeae*. Blood cultures and examination of fluids such as joint fluids may be useful in diagnosis. Dermatitis as a result of DGI is characterised by a small number of skin lesions that are located mainly on the extremities. DGI may be complicated when seeding of the heart valves or meninges results in gonococcal endocarditis or meningitis. The most common manifestation of DGI is the arthritis-dermatitis syndrome. DGI resulting in meningitis is very rare.

Sexual transmission of *Neisseria meningitidis* may also cause lower genital infections in both men and women but asymptomatic colonisation usually results.

Media for the isolation of *N. gonorrhoeae* may become overgrown with yeasts. In addition, it has been demonstrated that *C. albicans* may produce a soluble factor which may inhibit the growth of *N. gonorrhoeae*. Therefore, this SOP recommends the use of selective media containing antifungal agents.

Trichomoniasis, caused by the flagellate protozoan, *T. vaginalis*, is almost always acquired through sexual contact. Presenting symptoms include an increased vaginal discharge, pruritus and dysuria. An erythematous, friable cervix with punctate areas of exudate (strawberry cervix) is pathognomonic of *T. vaginalis*. Long-term carriage may occur, with symptoms not appearing for years after the initial sexual contact. TV infection in pregnancy has been associated with low birth weight and preterm delivery. The prevalence of *T. vaginalis* remains at a constant low level in cases seen in GUM clinics. Various techniques including culture followed by microscopy, direct microscopy and immunodiagnostic methods for the detection of *T. vaginalis* have been compared. Microscopy has been the most practicable means of diagnosis for routine screening. Microscopy of a wet...
preparation is highly specific and easily performed, but it fails to detect 30-50% of TV infections (even when undertaken close to the patient12,14) compared to culture which is regarded as the “gold standard”14. Detection using films stained with acridine orange has been found to be only slightly more sensitive than unstained wet preparations13.

Conventional culture methods are slow and labour-intensive, but a method utilising microtitre trays read with an inverted microscope has been described which is cost effective without any loss in sensitivity14.

This SOP recommends selective culture from patients with clinically suspected \textit{T. vaginalis} infection, with other diagnosed or suspected STI, in pregnancy, when requested and in other groups according to local protocols. Local protocols may vary depending on local prevalence.

Genital ulcers are most commonly caused18:

- herpes simplex virus (HSV)
- \textit{C. trachomatis} (lymphogranuloma venereum)
- \textit{Treponema pallidum} (syphilis)
- \textit{Calymmobacterium granulomatis} (granuloma inguinale)
- \textit{Haemophilus ducreyi} (chancroid)

Investigations for HSV, \textit{T. pallidum} and \textit{C. trachomatis} are not covered by this SOP.

\textit{Staphylococcus aureus} and Lancefield group A streptococci may also cause tender pustules resembling ulcers on genitalia, as well as inguinal lymphadenopathy and soreness18.

Chancroid is an important cause of genital ulceration in the tropics, and its incidence increased dramatically in North America during the late 1980's. It is caused by \textit{H. ducreyi} which enters via a break in the epithelium19. Chancroid ulcers are vascular, painful and the granulomatous base bleeds easily.

Lesions occur on and around the genitalia18,20. As well as genital ulcers, painful inguinal lymphadenopathy (buboes) can develop in about 50% of cases19. Asymptomatic carriage appears to be rare. Infection rarely presents as urethritis alone without any genital ulcers21.

The incidence of chancroid is reportedly increasing in many areas, although diagnosis is often made on clinical grounds alone and may thus be inaccurate19. Chancroid, in common with other sexually transmitted diseases, is thought to be an important co-factor in the transmission of HIV in the tropics22.

Examination of Gram stained material from genital ulcers has poor sensitivity and specificity19,20. Results from immunofluorescence and molecular techniques are encouraging but need further evaluation24.

Isolation of \textit{H. ducreyi} is comparatively difficult22 and requires selective agar media19,23,24, although isolation rates of up to 80% have been reported.

\textit{C. granulomatis}25 infection is a rare condition found only in certain parts of the tropics. This organism has rarely been grown in vitro and culture is not routinely practicable. It is demonstrated by performing Giemsa or Wright stains on scrapings from the edge of the ulcer. It is an encapsulated Gram-negative bacterium. The organisms or “Donovan bodies” appear as a cluster of blue or black bodies with a “safety pin” morphology found within PMNs. The primary lesion begins as an indurated nodule that erodes to form a granulomatous, heaped ulcer. Lesions occur on the folds of the scrotum, thighs, labia and vagina.
Genital warts is a venereal infection caused by human papillomavirus (HPV)26. Sub-clinical carriage of HPV is common and greatly exceeds the prevalence of visible warts27. They may occur as flat warts which may progress to carcinoma in situ, or may occur as a papillary projection above the skin with a rich capillary bed. In women, warts are located most frequently in the posterior introitus and labia and less commonly in the perianal area. In uncircumcised men the prepuce is the most common site of infection27.

Children are also at risk of acquiring sexually transmissible infections28,29-34. Although the presence of a sexually transmitted organism beyond the neonatal period is highly suggestive of sexual abuse, and this possibility should always be investigated, exceptions do exist. Rectal or genital infection with \textit{C. trachomatis} among young children may be the result of perinatally acquired infection and may persist for as long as 3 years. Similarly, anogenital warts may be present in prepubertal children as a consequence of perinatal transmission, or of autoinoculation from common hand warts. Bacterial vaginosis has been identified among both abused and non-abused children.

Specimens for forensic or medico-legal investigations are outside the remit of this SOP and should be processed according to local protocols. It is advisable to use a "chain of evidence" procedure when processing specimens from possible cases of sexual assault or abuse. In such cases, appropriate specimens may be taken for investigation for \textit{C. trachomatis}, \textit{N. gonorrhoeae}, and the presence of \textit{T. vaginalis} and clue cells35.

VAGINAL INFECTIONS (OTHER THAN STIS)

Normal vaginal flora consists of a wide range of organisms36-39 including \textit{Lactobacillus} species, streptococci, enterococci and coagulase-negative staphylococci. Anaerobes, such as \textit{Bacteroides} species and anaerobic cocci, \textit{Gardnerella vaginalis}, yeasts, coliforms, \textit{Ureaplasma urealyticum} and \textit{Mycoplasma} species may also be present as part of the normal flora, but they have also been incriminated in vaginal infections.

Vaginal candidosis occurs when alterations in the vaginal environment allow yeasts (which are often present as commensal organisms in the vagina), to proliferate. Increased levels of oestrogens promote their growth. Yeast overgrowth is often seen in the following conditions:

- after antimicrobial therapy
- diabetes mellitus
- immunosuppression
- obesity
- pregnancy
- use of oral contraceptives

Although \textit{Candida albicans} is isolated in 80-90% of cases of vaginal candidosis, other yeasts account for 10-15% of cases and include40:

- \textit{Candida krusei}
- \textit{Candida kefyr}
- \textit{Candida tropicalis}
- \textit{Candida glabrata}
Cases commonly present with pruritus, dysuria and a whitish discharge, although sometimes there is just mucosal erythema and soreness. Infections with species other than albicans may result in treatment failure and subsequent persistent infections.

This SOP recommends routine culture of all vaginal, endocervical and urethral swabs for yeasts.

Vaginitis\(^{41}\) can be caused by *Candida* species and *T. vaginalis*. In children, infections caused by β-haemolytic streptococci\(^{42}\) and *S. aureus* are common. Lancefield group A streptococci also cause vaginitis and purulent vaginal discharge in adults\(^{43}\).

Atrophic vaginitis\(^{14}\) is a rare condition usually associated with the elderly. The majority of women with mild to moderate atrophy are asymptomatic. Reduced endogenous oestrogen causes the epithelium to thin, contributing to a reduction in lactic acid production and an increase in vaginal pH. This change causes overgrowth with mixed flora and the disappearance of lactobacilli. The vaginal discharge contains polymorphonuclear leucocytes and small round basal epithelial cells.

Vulvovaginitis is mainly seen in prepubertal females, but may affect women of any age. It may be associated with poor hygiene, skin irritation due to soaps, or with streptococcal throat carriage. Symptoms include irritation, soreness and discharge. Causative organisms include\(^{18,45-47}\):

- Lancefield group A streptococcus
- *Staphylococcus aureus*
- *C. albicans*
- *Haemophilus influenzae*
- *N. gonorrhoeae*

Other unusual organisms may cause vulvovaginitis\(^{48}\) including *Salmonella* and *Shigella* species. Threadworm infestation may predispose to vulvovaginitis (see BSOP 31).

Bacterial vaginosis (BV)\(^{49,50}\) is characterised by an increase in anaerobes and a decrease in *Lactobacillus* species.

BV has been regarded in the past as a harmless abnormality. However it is now considered to be associated with a variety of genital tract infections and complications including\(^{49,51}\):

- amnionitis
- postpartum endometritis and fever
- preterm labour and low birth weight
- premature rupture of membranes (PROM)
- post vaginal hysterectomy sepsis
- pelvic inflammatory disease (PID)
- urinary tract infections

BV may be diagnosed clinically if three of the following four criteria are fulfilled\(^{52}\):

- grey-white, thin homogenous discharge
• vaginal secretions pH > 4.5
• positive amine odour test (release of fishy amine odour when vaginal secretion is mixed with 5-10% potassium hydroxide)
• presence of clue cells on microscopic examination

A normal vaginal flora is associated with the presence of *Lactobacillus* species alone or in the presence of small numbers of *G. vaginalis* morphotypes. The shift in vaginal flora associated with BV is characterised by a decrease in numbers of lactobacilli which are replaced by a mixed flora of aerobic, anaerobic and microaerophilic species. A diverse group of organisms is involved, many of which are difficult to grow. Organisms associated with BV include:

- *Prevotella* species
- *G. vaginalis*
- *Mobiluncus* species
- *Peptostreptococcus* species
- *Mycoplasma hominis*

Although *G. vaginalis* is encountered consistently and in large numbers in women with BV, the organism can also be isolated from as many as 60% of asymptomatic women. Direct examination of vaginal secretions is more relevant for the diagnosis of BV than is the isolation of *G. vaginalis* from these specimens.

Examination of Gram-stained films is reported to be useful in the diagnosis of BV and standard criteria for morphotypes have been described. In typical smears from patients with BV, clue cells are accompanied by a mixed flora consisting of very large numbers of small Gram-negative rods (predominantly *Prevotella* species) and Gram-variable rods and coccobacilli (predominantly *G. vaginalis*) in the absence of larger Gram-positive rods (*Lactobacillus* species). Curved Gram-variable rods (*Mobiluncus* species) may be also be present.

Clue cells are epithelial cells to which Gram-variable rods are attached in large numbers, obscuring the cell border. They are reported as being highly specific (almost 100%) but not as sensitive as using other aspects of a Gram stain to detect BV. Using Amsel’s original criteria, clue cells are only significant if two of the other three criteria (grey-white discharge, pH >4.5 and a positive amine test) are fulfilled.

Gram staining (using the criteria of Nugent or Hay) of vaginal smears is the most sensitive method for the laboratory diagnosis of BV, as it detects both clue cells and the disturbance in bacterial morphotypes associated with BV. It is not necessary to see clue cells to make a diagnosis of BV. One of the key features is the absence of typical lactobacilli and their replacement with Gram-variable or Gram-negative rods. However, one study found that acridine orange or wet preparations are more sensitive methods for detecting clue cells than the Gram stain. Detection of clue cells alone, whilst highly specific for BV, is not as sensitive as detection of different morphotypes by the Gram stain.

This SOP recommends the examination of all vaginal swabs from women of child bearing age for the presence of BV by Gram film.

Toxic shock syndrome (TSS) is an acute multi-system illness characterised by fever, hypotension, erythematous rash, diarrhoea and desquamation of the skin upon recovery. TSS is caused by a toxin produced by *S. aureus*. Isolation of a toxin-producing *S. aureus* from a mucous membrane is strong support for a positive diagnosis. There is a TSS-like illness caused by Lancefield group A streptococci.

TSS can be associated with:

INVESTIGATION OF GENITAL TRACT AND ASSOCIATED SPECIMENS

Issue no: 4.1 Issue date: 03.05.05 Issued by: Standards Unit, Evaluations and Standards Laboratory. Page 10 of 33

Reference no: BSOP 28/4.1

This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk
• tampon use
• childbirth or other surgical wound infection
• contraceptive devices
• cervico-vaginal colonisation with S. aureus

Lancefield group B streptococcus normally colonises the vagina in many women. In pregnancy this organism can infect the amniotic fluid (see BSOP 26) which can lead to neonatal sepsis, pneumonia and meningitis (see BSOP 23). According to local protocol, patients judged at high risk for the development of group B streptococcal infection may be screened for carriage. Optimum yield will be achieved by selective/enrichment procedures applied to swabs obtained from the vagina and the anorectum.

Conditions considered to confer a high risk of infection include:

• fever in labour
• premature labour
• PROM
• previously infected baby

Listeria monocytogenes may cause serious infection in pregnant women, neonatal infants and patients who are immunocompromised. In pregnant women septicaemia caused by *L. monocytogenes* presents as an acute febrile illness that may affect the fetus. This may lead to systemic infection (granulomatosis infantisepticum), stillbirth and neonatal meningitis. Products of conception, placenta and neonatal screening swabs should be examined for this organism (processing neonatal screening swabs is described in BSOP 23). Routine culture of vaginal swabs for *L. monocytogenes* is not usually performed although it may be useful in suspected cases. Blood cultures are indicated. Serological investigations have no place in the diagnosis of listeriosis.

Septic abortion may result in serious maternal morbidity and may be fatal. Uterine perforation, presence of necrotic debris, and retained placental products can lead to infection. Most infections are polymicrobial and involve anaerobes.

Clostridial sepsis complicating abortion is potentially lethal. *Clostridium* species are part of the normal vaginal flora in some women.

OTHER INFECTIONS OF THE FEMALE GENITAL TRACT

Bartholinitis is inflammation of the Bartholin glands, the small mucus-producing glands on each side of the vaginal orifice of adult women. Two stages of infection occur. The first stage is acute infection of the duct and lining of the gland. The second stage is abscess formation in which the gland is obstructed.

Causative organisms of Bartholin’s gland infections include:

• anaerobes
• *N. gonorrhoeae*
• streptococci
• Enterobacteriaceae
• *C. trachomatis*
• *H. influenzae*
• *S. aureus*
• *other Neisseria species*
• *M. hominis*

Mucopurulent cervicitis is inflammation of cervical columnar epithelium. Causative organisms include66:

- *C. trachomatis*
- HSV
- *N. gonorrhoeae*

Other organisms such as *U. urealyticum, M. hominis* and those linked with BV have not been consistently associated with mucopurulent cervicitis, suggesting only a weak association or their dependence on the presence of other organisms66.

Cervicitis is important as it provides a source of pathogenic organisms which may infect the endometrium and endosalpinx. Ascent during pregnancy can cause chorioamnionitis, premature rupture of membranes, puerperal and neonatal infections.

Gram stained smears are used to evaluate the presence of polymorphonuclear leucocytes67. Mucopurulent cervicitis is characterised by the presence of an endocervical exudate containing PMNs. A visible yellow discharge is produced.

Endometritis is inflammation of the endometrium, the inner lining of the uterus. Organisms that may cause this infection include:

- *C. trachomatis*
- *N. gonorrhoeae*
- *Mycobacterium tuberculosis*
- HSV

Postpartum endometritis - most infections are caused by vulvovaginal flora that ascend into the uterus. Infections are often polymicrobial and caused by68:

- β-haemolytic streptococci
- *S. aureus*
- enterococci
- anaerobes
- *C. trachomatis*
- Enterobacteriaceae
- *G. vaginalis*
• **M. hominis**

Risk factors include:
- amniotic fluid infection
- caesarean delivery
- invasive fetal monitoring
- prolonged rupture of membranes
- vaginal examinations

Appropriate specimens include a swab of the lower uterine segment or the cervix.

Salpingitis is inflammation of the uterine (fallopian) tube. Infection is sometimes polymicrobial involving:
- **C. trachomatis**
- **N. gonorrhoeae**
- mixed anaerobic, facultative anaerobic and aerobic bacteria
- **M. hominis**

Specimens from the fallopian tubes are superior to endocervical swabs. Endocervical swabs may be useful but require more careful interpretation. Acute salpingitis can result in sequelae such as chronic abdominal pain and an increased risk of ectopic pregnancy.

Pelvic inflammatory disease (PID) is the term used to refer to endometritis, salpingitis, pelvic peritonitis or a combination of these. Symptoms include dyspareunia, intermenstrual bleeding and lower abdominal cramps.

Many women who develop PID suffer long term sequelae such as:
- chronic pelvic pain
- ectopic pregnancy
- infertility
- pyosalpinx (collection of pus in a fallopian tube)
- tubo-ovarian abscess (TOA)

PID is often a polymicrobial illness. Women with gonococcal PID may also be infected with **C. trachomatis**.

The preferred specimens for diagnosis of PID are aspirates collected from a fallopian tube or a TOA, or peritoneal fluid (processing peritoneal fluid is described in BSOP 26). Swabs of pus or fluid are acceptable but where possible pus or fluid samples should be sent. These are processed in the same manner as pus/fluid.

Organisms that cause PID include:

INVESTIGATION OF GENITAL TRACT AND ASSOCIATED SPECIMENS

Issue no: 4.1 Issue date: 03.05.05 Issued by: Standards Unit, Evaluations and Standards Laboratory. Page 13 of 33

Reference no: BSOP 28i4.1

This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk
- **C. trachomatis**
- **N. gonorrhoeae**
- Anaerobes
- Lancefield group B streptococcus
- Other streptococci
- **Escherichia coli**
- **G. vaginalis**
- **Actinomyces israelii**
- **M. hominis**
- **H. influenzae**

Intrauterine contraceptive devices (IUCDs) - the presence of an IUCD may be associated with PID. Infections may be polymicrobial with the isolation of both Gram-positive and Gram-negative aerobic and anaerobic organisms. **Actinomyces** species, particularly **A. israelii**, may be significant isolates. This SOP recommends that IUCDs are only cultured where there are clinical indications of PID or other inflammatory conditions.

INFECTIONS (OTHER THAN STIS) OF THE MALE GENITAL TRACT

Prostatitis is inflammation of the prostate. Acute or chronic infection may be caused by Enterobacteriaceae, **C. trachomatis**, **N. gonorrhoeae** and streptococci. **Cryptococcus neoformans** may be isolated from the prostate in patients who are HIV positive and this is an important site for persistence and a potential origin for relapse. Diagnosis is made by examining voided and midstream urine specimens as well as expressed prostatic secretions (see BSOP 41).

Epididymitis is inflammation of the epididymis. It may occur as a result of trauma or chemical irritation associated with urine reflux, or more usually as a complication of urethral or urinary infections. Diagnosis is usually made by examining urine or urethral swabs. Organisms that cause infection include:

- **C. trachomatis**
- Enterobacteriaceae
- **N. gonorrhoeae**
- Pseudomonads
- **M. tuberculosis**

Orchitis is inflammation of the testis. It is usually as a result of a blood-borne viral infection, the most common being mumps. Bacterial infection usually occurs as a result of contiguous spread. Diagnosis is made by examining urine. Causative organisms include:

- Enterobacteriaceae
- Pseudomonads
- Staphylococci
- Streptococci
- **M. tuberculosis**
Balanitis is inflammation of the glans penis\(^{74}\).

Balanoposthitis is inflammation of the prepuce and the glans penis.

Irritation due to smegma, urethral discharge or other agents can play a role in the aetiology of these two conditions.

Organisms that cause balanitis and balanoposthitis include\(^{74-77}\):

- yeasts
- HSV
- Lancefield group A streptococcus
- *S. aureus*
- Lancefield group B streptococcus
- anaerobes

Candida species may be isolated in cases of penile thrush.

Urethritis in men is mainly caused by\(^{73}\):

- *N. gonorrhoeae*
- *C. trachomatis*
- *U. urealyticum*

Haemophilus species such as *H. influenzae* and *H. parainfluenzae* have been isolated from urethral discharge\(^{78}\).
1.0 SAFETY CONSIDERATIONS

1.1 SPECIMEN COLLECTION

N/A

1.2 SPECIMEN TRANSPORT AND STORAGE

Pus, fluids and IUCDs

Sterile leakproof container in a sealed plastic bag

Swabs

Sealed plastic bag

1.3 SPECIMEN PROCESSING

Containment Level 2

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet

Refer to current guidance on the safe handling of all organisms documented in this SOP

The above guidance should be supplemented with local COSHH and risk assessments

Compliance with postal and transport regulations is essential

2.0 SPECIMEN COLLECTION

2.1 OPTIMAL TIME OF SPECIMEN COLLECTION

Before antimicrobial therapy where possible

2.2 CORRECT SPECIMEN TYPE AND METHOD OF COLLECTION

Genital tract swabs

Cervical and high vaginal swabs should be taken with the aid of a speculum. It is important to avoid vulval contamination of the swab. For Trichomonas, the posterior fornix, including any obvious candidal plaques should be swabbed. If pelvic infection, including gonorrhoea, is suspected, the cervical os should be swabbed

For the specific diagnosis of BV, it is recommended that an air-dried smear of vaginal discharge is sent in addition to the swab

Separate samples should be collected into appropriate transport media for detection of viruses or C. trachomatis

High vaginal swabs

After the introduction of the speculum, the swab should be rolled firmly over the surface of the vaginal vault. The swab should then be placed in Amies transport medium with charcoal
Cervical swabs

After introduction of the speculum to the vagina, the swab should be rotated inside the endocervix. The swab should then be placed in Amies transport medium with charcoal.

Urethral swabs

Contamination with micro-organisms from the vulva or the foreskin should be avoided. Thin swabs are available for collection of specimens.

The patient should not have passed urine for at least 1 hour. For males, if a discharge is not apparent, attempts should be made to "milk" exudate from the penis. The swab is gently passed through the urethral meatus and rotated. Place the swab in Amies transport medium with charcoal.

Intrauterine contraceptive devices (IUCDs)

The entire device should be sent.

Rectal swabs

Rectal swabs are taken via a proctoscope.

Throat swabs

Throat swabs should be taken from the tonsillar area and/or posterior pharynx avoiding the tongue and uvula.

Fluids and pus

These are taken from the fallopian tubes, tubo-ovarian and Bartholin's abscesses etc during surgery.

2.3 ADEQUATE QUANTITY AND APPROPRIATE NUMBER OF SPECIMENS

Fluids and pus – preferably a minimum volume of 1ml.

3.0 SPECIMEN TRANSPORT AND STORAGE

3.1 TIME BETWEEN SPECIMEN COLLECTION AND PROCESSING

Specimens should be transported and processed as soon as possible.

Ideally, inoculation of specimens for *N. gonorrhoeae* is made directly to culture media at the bedside and incubated without delay. Transport time should be as short as possible.

For *H. ducreyi* direct inoculation of media ensures optimal recovery.

3.2 SPECIAL CONSIDERATIONS TO MINIMISE DETERIORATION

Swabs should be transported in Amies transport medium with charcoal.

If processing is delayed, refrigeration is preferable to storage at ambient temperature. Delays of over 48h are undesirable.
4.0 SPECIMEN PROCESSING

4.1 TEST SELECTION

Investigation for *Chlamydia* and viruses may also be performed on genital tract specimens with the appropriate swabs and transport media for the organism under investigation

Microscopy for BV

Either

A Gram stained film of the vaginal discharge is the recommended method of detecting BV

Or

Acridine orange films or wet preparations may be used for the detection of clue cells, but are not as sensitive as the Gram film and are not recommended for optimal results. If clue cells or other abnormalities (such as lack of lactobacilli and/or the presence of numerous small rods) are present, then a new smear should be made (preferably from the vaginal discharge), Gram stained, and examined applying Nugent’s or Hay’s criteria (see section 5)

Culture for TV

Perform on specimens with clinically suspected *T. vaginalis* or other sexually transmitted disease (see 4.4.2), and all pregnant women. Routine screening may be justified in areas of higher prevalence

Microscopy for TV

Acridine orange films or wet preparations may be used for the detection of TV when routine screening is required. However, these methods are less sensitive than culture and are not recommended for optimal results

4.2 APPEARANCE

N/A

4.3 MICROSCOPY

4.3.1. Standard

Note 1: A direct, thin smear from the patient’s exudate/discharge is the preferred specimen

Note 2: Smears made from swabs in charcoal transport medium are not ideal for examination of specimens where gonorrhoea is suspected

(a) Microscopy for BV

Vaginal swabs from females of childbearing age with a diagnosis of vaginal discharge

Either

Perform Gram stain and apply Nugent’s or Hay’s criteria (see section 5)

Or

Acridine orange stained smear or wet preparation for clue cells with a Gram stained smear to confirm the presence of clue cells
(b) Microscopy for gonorrhoea

Cervical, endocervical, and female urethral smears and all male urethral specimens from suspected *N. gonorrhoeae* or known *N. gonorrhoeae* contact (unless previously performed in GUM clinic)

Prepare a thin smear on a clean microscope slide for Gram staining

Aspirates, fluids and pus (or swabs of these)

Using a sterile pipette place 1 drop of the centrifuged deposit (see section 4.4.1), or neat specimen if there is insufficient to centrifuge, on a clean microscope slide

Spread this with a sterile loop to make a thin smear for Gram staining

Screening swabs for *N. gonorrhoeae*

Microscopy may be performed in the GUM clinic

IUCDs

Rub the surface of the IUCD thoroughly with a sterile swab, previously moistened with sterile water or saline. After inoculation of all agar plates, prepare a thin smear on a clean microscope slide for Gram staining. If any pus or exudate is present prepare the smear from this

4.3.2. Supplementary

(a) Wet preparation for the detection of TV

After inoculation of all agar plates, prepare a wet prep by rotating the swab (or placing a drop of vaginal discharge) on a clean microscope slide

Place a coverslip over the wet inoculum and examine with a low power objective

(b) Acridine orange film for the detection of TV

After inoculation of all agar plates, prepare a thin smear on a clean microscope slide for acridine orange staining

Note 3: Methods for staining procedures are contained in separate SOPs

4.4 CULTURE AND INVESTIGATION

4.4.1. Pre-treatment

Products of conception

Grind or homogenise specimen with a sterile tissue grinder (Griffiths tube or unbreakable alternative), sterile scissors and petri dish, or a pestle and mortar. The addition of a small amount of sterile, filtered water, saline, peptone or broth will aid the homogenisation process.

All grinding or homogenisation must be performed in a microbiological safety cabinet

Aspirates, fluids

If sufficient sample is received, centrifuge at 1500 x g for 10mins

Decant the supernatant leaving approximately 0.5ml
4.4.2. Specimen processing

Culture for TV

Perform on specimens with clinically suspected *T. vaginalis* or other sexually transmitted infection

Method 1

Place the swab into a bijou bottle containing *Trichomonas* culture medium. This should be performed after inoculation of culture plates unless a separate swab is sent, because the medium contains antimicrobial agents

Incubate in air at 35-37°C for 40-48h

Do not mix the culture after incubation. Withdraw some of the deposit from the bottom of the bottle with a pipette

Place a drop on a clean microscope slide and over-lay with a coverslip

Examine for the presence of motile trichomonads with a low power objective

Method 2

Pipette 100µl of *Trichomonas* culture medium to each well of a 96-well flat-bottomed microtitre tray

Carefully swirl the genital swab in the appropriately labelled well

Add a further 200µl culture medium to each well, cover with clear microplate sealer and incubate in air at 35-37°C for 40-48h

Examine at 16h - 48h, without removing the seal, for the presence of motile trichomonads with an inverted microscope under the low power objective

Note 4: Do not remove microplate seal after application as cross contamination of wells may occur. Because of this, it is advisable to perform culture by this method as a batch towards the end of the working day. Microscopy should be performed through the seal

Swabs

Inoculate each agar plate with swab (see BSOP 54)

For the isolation of individual colonies, spread inoculum with a sterile loop

Aspirates, fluids

With a sterile pipette, inoculate each agar plate with centrifuged deposit (see section 4.4.1) or neat specimen (see BSOP 54)

For the isolation of individual colonies, spread inoculum with a sterile loop

IUCDs

Rub the surface of the IUCD thoroughly with a sterile swab. Inoculate each agar plate with the swab (see BSOP 54)

For the isolation of individual colonies, spread inoculum with a sterile loop
Products of conception

Using a sterile pipette inoculate each agar plate with homogenised specimen (see BSOP 54)

For the isolation of individual colonies, spread inoculum with a sterile loop
4.4.3 Culture media, conditions and organisms

All genital swabs except STI screen, IUCDs

For all specimens:

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Standard media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp °C</td>
<td>Atmos</td>
<td></td>
</tr>
<tr>
<td>All HVS</td>
<td>Blood agar*</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>16-24h</td>
</tr>
<tr>
<td></td>
<td>Sabouraud agar</td>
<td>35-37</td>
<td>air</td>
<td>40-48h†</td>
</tr>
<tr>
<td>Urethral swabs</td>
<td>Blood agar*</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>16-24h</td>
</tr>
<tr>
<td>Cervical swabs</td>
<td>Sabouraud agar</td>
<td>35-37</td>
<td>air</td>
<td>40-48h</td>
</tr>
<tr>
<td></td>
<td>GC selective agar with antifungal agent</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>40-48h†</td>
</tr>
</tbody>
</table>

Other organisms for consideration - T. vaginalis, C. trachomatis, Mycoplasma species and viruses

*may be replaced by Staph/strep selective agar ONLY in patients with vaginal discharge

†incubation may be extended to 5 days; in such cases plates should be read at ≥40h and left in the incubator/cabinet until day 5

Note 5: If a vaginal swab is received in combination with a cervical and urethral swab, include standard media only with the vaginal and urethral swabs and add supplementary media as appropriate for the cervical swab.
4.4.3 Culture media, conditions and organisms (continued)

For these situations add the following:

<table>
<thead>
<tr>
<th>Clinical details/ conditions</th>
<th>Supplementary media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp °C</td>
<td>Atmos</td>
<td>Time</td>
</tr>
<tr>
<td>Clinically suspected TV STD Pregnancy</td>
<td>Trichomonas medium</td>
<td>35-37</td>
<td>air</td>
<td>40-48h</td>
</tr>
<tr>
<td>Intra-uterine death Septic abortion Miscarriage</td>
<td>Neomycin fastidious anaerobe agar with metronidazole 5µg disc</td>
<td>35-37</td>
<td>anaerobic</td>
<td>40-48h*</td>
</tr>
<tr>
<td>Balanitis Balanoposthitis Epididymitis†</td>
<td>CLED agar</td>
<td>35-37</td>
<td>air</td>
<td>≥16h</td>
</tr>
<tr>
<td>Orchitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>?Listeriosis Intra-uterine death Septic abortion Miscarriage</td>
<td>Listeria selective agar</td>
<td>35-37</td>
<td>air</td>
<td>40-48h</td>
</tr>
<tr>
<td><10 years old</td>
<td>Chocolate agar</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>40-48h</td>
</tr>
<tr>
<td>? Actinomyces (clinically indicated or suggested by microscopy)</td>
<td>Blood agar supplemented with metronidazole and nalidixic acid</td>
<td>35-37</td>
<td>anaerobic</td>
<td>10d</td>
</tr>
<tr>
<td>?chancroid‡</td>
<td>H. ducreyi selective agar</td>
<td>33-34</td>
<td>5-10% CO₂</td>
<td>5d</td>
</tr>
</tbody>
</table>

Other organisms for consideration - T. vaginalis, C. trachomatis (BSOP 56), Mycoplasma species and viruses

*incubation may be extended to 5 days; in such cases plates should be read at ≥40h and left in the incubator/cabinet until day 5

†urine specimens may be investigated for these conditions (see BSOP 41)

‡often a clinical diagnosis - refer to local protocols
4.4.3 Culture media, conditions and organisms

All STI screening swabs

For all specimens:

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Standard media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp °C</td>
<td>Atmos</td>
<td>Time</td>
</tr>
<tr>
<td>?STI</td>
<td>GC selective agar with antifungal agent</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>≥40h</td>
</tr>
</tbody>
</table>

For these situations add the following:

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Supplementary media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>?STI (if required by local protocol)</td>
<td>Sabouraud agar</td>
<td>35-37</td>
<td>air</td>
<td>≥40h</td>
</tr>
</tbody>
</table>

Other organisms for consideration: *T. vaginalis, C. trachomatis*, *Mycoplasma* species, *T. pallidum* and viruses
4.4.3 Culture media, conditions and organisms

Aspirates/pus and swabs from tubo-ovarian abscess (TOA), fallopian tube, Pouch of Douglas (PoD), Bartholin’s gland, IUCD and surgical specimens. For all specimens:

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Standard media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PID Salpingitis TOA</td>
<td>Chocolate agar</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>40-48h daily</td>
</tr>
<tr>
<td>Bartholin’s abscess</td>
<td>Blood agar</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>40-48h daily</td>
</tr>
<tr>
<td>Pyosalpinx</td>
<td>Fastidious anaerobe agar</td>
<td>35-37</td>
<td>anaerobic</td>
<td>5d</td>
</tr>
<tr>
<td>Products of conception</td>
<td>GC selective agar</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>40-48h daily</td>
</tr>
<tr>
<td>Infected IUCD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other inflammatory conditions</td>
<td>CLED agar</td>
<td>35-37</td>
<td>air</td>
<td>16-24h</td>
</tr>
</tbody>
</table>

For these situations add the following:

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Supplementary media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>? Actinomyces (clinically or suggested by microscopy)</td>
<td>Blood agar supplemented with metronidazole and nalidixic acid</td>
<td>35-37</td>
<td>anaerobic</td>
<td>10d</td>
</tr>
<tr>
<td>If microscopy suggestive of mixed infection</td>
<td>Neomycin fastidious anaerobe agar with metronidazole 5mg disc</td>
<td>35-37</td>
<td>anaerobic</td>
<td>5d</td>
</tr>
<tr>
<td>CLED agar</td>
<td></td>
<td>35-37</td>
<td>air</td>
<td>16-24h</td>
</tr>
</tbody>
</table>

Optional media

<table>
<thead>
<tr>
<th>Either:</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-supplemented or supplemented blood culture bottles* or Supplemented brain heart infusion broth</td>
<td>continuous monitoring (minimum 40-48h)</td>
<td>N/A</td>
<td>Any organism</td>
</tr>
<tr>
<td>Subcultured as appropriate at >40h on to the standard media</td>
<td>40-48h</td>
<td>daily</td>
<td>as above</td>
</tr>
<tr>
<td>as above</td>
<td>as above</td>
<td>as above</td>
<td></td>
</tr>
</tbody>
</table>

Note 6: a growth of any organism may be significant

*follow manufacturers recommendations

Other organisms for consideration: C. trachomatis, Mycoplasma and Ureaplasma species, Mycobacterium species (BSOP 40) and viruses
4.5 IDENTIFICATION

4.5.1. Minimum level

Actinomyces "actinomycetes" level
Anaerobes "anaerobes" level
β-haemolytic streptococci Lancefield group level
Other streptococci genus level
and enterococci
Enterobacteriacea "coliforms" level
Haemophilus species level
Listeria species level
Neisseria species level
Pseudomonads "pseudomonads" level
S. aureus species level
Yeasts "yeasts" level

Organisms may be further identified if clinically or epidemiologically indicated

4.5.2. Referral to Reference Laboratories

Listeria species for confirmation of identity
Actinomyces species for identification
N. gonorrhoeae for confirmation of identity, typing (medico-legal cases) and susceptibility testing
N. gonorrhoeae for all antibiotic resistant isolates (and strains with a reduced susceptibility to penicillin)
Isolates associated with outbreaks and where epidemiologically indicated
Organisms with unusual or unexpected resistance, and whenever there is a laboratory or clinical problem or anomaly that requires elucidation

4.6 ANTIBIOTIC SUSCEPTIBILITY TESTING

Refer to SOP on Susceptibility Testing (BSOP 45)
5.0 REPORTING PROCEDURE

5.1 MICROSCOPY

(a) Gram films

Report on yeasts and WBCs if present and on the presence or absence of intracellular Gram-negative diplococci

Report on organisms seen in films from aspirates/pus (local reporting procedures should be followed on reporting of organisms seen in other specimens)

Report on clue cells if present and whether microscopy is suggestive of BV according to the criteria of Nugent (number of organisms per high power, oil immersion field (hpf) at approximately x1000 magnification54) or of Hay:

Nugent’s criteria54

<table>
<thead>
<tr>
<th>Numbers of Lactobacillus morphotypes seen</th>
<th>Score</th>
<th>Numbers of Gardnerella and Prevotella morphotypes seen</th>
<th>Score</th>
<th>Numbers of Mobiluncus morphotypes seen</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>>30/hpf</td>
<td>0</td>
<td>>30/hpf</td>
<td>4</td>
<td>>30/hpf</td>
<td>4</td>
</tr>
<tr>
<td>5-30/hpf</td>
<td>1</td>
<td>5-30/hpf</td>
<td>3</td>
<td>5-30/hpf</td>
<td>3</td>
</tr>
<tr>
<td>2-4/hpf</td>
<td>2</td>
<td>2-4/hpf</td>
<td>2</td>
<td>2-4/hpf</td>
<td>2</td>
</tr>
<tr>
<td>1/hpf</td>
<td>3</td>
<td>1/hpf</td>
<td>1</td>
<td>1/hpf</td>
<td>1</td>
</tr>
<tr>
<td>none</td>
<td>4</td>
<td>none</td>
<td>0</td>
<td>none</td>
<td>0</td>
</tr>
</tbody>
</table>

Code each morphotype separately according to numbers of organisms seen as indicated in the table above and add individual scores together. Interpret scores as follows:

Total score 0-3 normal

Total score 4-6 intermediate: suggestive of BV Assess with clinical criteria and send repeat to confirm

Total score ≥6 abnormal: indicative of BV

Hay’s criteria73

Grade I normal predominantly Lactobacillus morphotypes

Grade II intermediate mixed Lactobacillus and other morphotypes. Assess with clinical criteria and send repeat to confirm if necessary

Grade III abnormal few or absent Lactobacillus morphotypes, but greatly increased number of G. vaginalis and other bacterial morphotypes. Suggestive of BV

Note 7: A vaginal smear should be requested on any swab that is suggestive of BV or if examination for BV is specifically requested

(b) Wet preparations or acridine orange films

Report on WBCs, yeasts and trichomonads seen
Note 8: A negative microscopy result does not exclude the possibility of TV infection

5.1.1. Microscopy reporting time

Urgent microscopy results to be telephoned or sent electronically
Written report: 16 - 72h

5.2 CULTURE

Report clinically significant organisms isolated or
Report other growth (eg normal flora isolated) or
Report absence of specific pathogens or
Report absence of growth

The absence of *N. gonorrhoeae* in vaginal swabs should not be reported as these are not the specimen of choice for the isolation of *N. gonorrhoeae*. Recommendations on the appropriate specimen type should be included in the report.

Also, report results of supplementary investigations

According to local protocols for reporting the carriage of Group B Streptococci, it may be appropriate for laboratories to report isolates of Group B streptococci to the Ante-natal Clinic.

5.2.1. Culture reporting time

Clinically urgent culture results to be telephoned or sent electronically
Written report: 16 - 72h stating, if appropriate, that a further report will be issued
Supplementary investigations: see appropriate SOPs

5.3 ANTIBIOTIC SUSCEPTIBILITY TESTING

Refer to SOP on Susceptibility Testing (BSOP 45)

6.0 REPORTING TO THE HPA (LOCAL AND REGIONAL SERVICES AND CDSC CENTRE FOR INFECTIONS)

Refer to the following:

Individual SOPs on organism identification

Health Protection Agency publications:

"Reporting to the CDR: A guide for laboratories"

"Hospital infection control: Guidance on the control of infection in hospitals"

Refer to current guidelines on CDSC and COSURV reporting

Local guidelines
Report all isolates of *N. gonorrhoeae* and *L. monocytogenes*

It may be appropriate for laboratories to report isolates of Group B streptococci to the Antenatal Clinic as according to local protocols for the reporting of the carriage of these isolates.
REFERENCES

Murphy TV, Nelson JD. Shigella vaginitis: report of 38 patients and review of the literature. Pediatrics 1979;63:511-6

CDC. Recommendations and Reports. Prevention of perinatal group B streptococcal disease: A public health perspective. MMWR 1996;45: RR-7
INVESTIGATION OF GENITAL TRACT AND ASSOCIATED SPECIMENS

Issue no: 4.1 Issue date: 03.05.05 Issued by: Standards Unit, Evaluations and Standards Laboratory. Page 32 of 33

This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency

www.evaluations-standards.org.uk
Email: standards@hpa.org.uk

Reference no: BSOP 28i4.1

This SOP should be used in conjunction with the series of other SOPs from the Health Protection Agency

www.evaluations-standards.org.uk
Email: standards@hpa.org.uk

Sweet RL, Schachter J, Robbie MO. Failure of β-lactam antibiotics to eradicate Chlamydia trachomatis in the endometrium despite apparent clinical cure of acute salpingitis. JAMA 1983;250:2641-5

Kyriazi NC, Costenbader CL. Group A β-haemolytic streptococcal balanitis: it may be more common than you think. Pediatrics 1991;88:154-6

Public Health Laboratory Service Standing Advisory Committee on Laboratory Safety. Safety precautions: notes for guidance, 4th ed. London: Public Health Laboratory Service (PHLS); 1993

Health and Safety Executive. 5 steps to risk assessment: a step by step guide to a safer and healthier workplace, IND (G) 163 (REV). Suffolk: HSE Books; April

Health and Safety Executive. A guide to risk assessment requirements: common provisions in health and safety law, IND (G) 218 (L). Suffolk: HSE Books; March 2002

Health Services Advisory Committee. Safety in Health Service Laboratories. Safe working and the prevention of infection in clinical laboratories and similar facilities. 2nd ed. Suffolk: HSE Books; 2003

