INVESTIGATION OF SINUS ASPIRATE

BSOP 19

Issued by Standards Unit, Department for Evaluations, Standards and Training
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practice and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions.

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

The reader is informed that all taxonomy in this document was correct at time of issue.

Suggested citation for this document:

INVESTIGATION OF SINUS ASPIRATE
Issue no: 7.1 Issue date: 03.12.09 Issued by: Standards Unit, Department for Evaluations, Standards and Training Page no: 2 of 16
BSOP 19/7.1
This NSM should be used in conjunction with the series of other NSMs from the Health Protection Agency
www.evaluations-standards.org.uk
Email: standards@hpa.org.uk
AMENDMENT PROCEDURE

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/ 03.12.09</td>
<td>7</td>
<td>7.1</td>
<td>1</td>
<td>Front page</td>
<td>SMF logo added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>Technical Information/Limitations</td>
<td>endnote added to clarify the change and referenced to IVD Directive 98/79/EC</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.2 Specimen transport and storage</td>
<td></td>
</tr>
</tbody>
</table>

This NSM should be used in conjunction with the series of other NSMs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk
INVESTIGATION OF SINUS ASPIRATE

Types of specimens: Antral washout, Sinus aspirate and sinus washout

SCOPE OF DOCUMENT

This document describes the examination of sinus aspirate and associated specimens for the detection and recovery of the organisms that cause the various forms of sinusitis.

INTRODUCTION

Sinusitis

Sinusitis usually refers to an infection of one or more of the paranasal sinuses; maxillary, ethmoid, frontal and sphenoid and is most often caused by organisms from the upper respiratory tract. Factors that predispose an individual to sinusitis include impaired mucociliary function, obstruction of the sinus entrance (eg by nasotracheal intubation or by mucosal oedema as a result of viral infection) and defects in the immune system. The sinus cavities are usually sterile or may contain small numbers of bacteria that are continuously removed by the mucociliary system. Specimens should be obtained by careful aspiration of the sinus cavity avoiding contamination by upper respiratory tract flora and will be collected by an ear, nose and throat surgeon.

Acute sinusitis

Acute sinusitis can be community or nosocomially acquired. The aetiology of community acquired infections can be viral, bacterial, mixed (viral and bacterial), or occasionally fungal. Nosocomial infections are usually bacterial but can occasionally be viral. In some cases that are not due to an infection, the condition may have an allergic or toxic origin. Patients who are immuno-compromised are also susceptible to acute sinusitis.

Viruses

Viral upper respiratory tract infection is an important cause of acute sinusitis. Viruses such as rhinoviruses, influenza virus, parainfluenza virus and adenovirus may cause infection (see QSOP 60 - Respiratory Viruses).

Acute community acquired sinusitis

The most common bacteria isolated from cases of acute community acquired sinusitis are Streptococcus pneumoniae and non-encapsulated Haemophilus influenzae. Other organisms isolated are streptococci of the “anginosus” group (Streptococcus anginosus, Streptococcus constellatus and Streptococcus intermedius), group A streptococcus, other α-haemolytic streptococci, Staphylococcus aureus, Moraxella catarrhalis (which is more prevalent in children than adults) and anaerobic bacteria (which are infrequent in children).

Occasionally, fungi are a cause of community acquired sinusitis, particularly in tropical and subtropical regions.

Nosocomial sinusitis

Nosocomial sinusitis can occur after head trauma, and prolonged nasotracheal or naso-gastric intubation. Other patients at risk of nosocomial sinusitis include those with neutropenia, diabetic ketoacidosis and those treated with corticosteroids or broad-spectrum antibiotics.

The most common bacterial isolates in nosocomial sinusitis are S. aureus, Pseudomonas aeruginosa, Serratia marcescens, Klebsiella pneumoniae, Enterobacter species and Proteus mirabilis. The condition is often polymicrobial.

In patients who are immuno-suppressed, HIV positive or in those patients with a chronic infection, Pseudomonas aeruginosa can be a cause of sinusitis.
Fungal infections are usually due to filamentous fungi. Probably the most common causes are Aspergillus species (especially Aspergillus flavus), Rhizopus and Mucor species. Several other species have been implicated, including Sporothrix schenckii and Scedosporium apiospermum (previously known as Pseudallescheria boydii). Candida species and Cryptococcus neoformans are also causes of infection in patients who are immuno-compromised.

In patients who are immunocompromised and hospitalised, filamentous fungi may cause life-threatening infections. Fungal sinusitis in such individuals is usually locally invasive. Bone marrow transplant recipients and patients with neutropenia are at risk of invasive sinusitis caused by Aspergillus species. Patients with diabetic ketoacidosis or prolonged neutropenia are at particular risk of rhinocerebral mucormycosis, most commonly caused by Rhizopus species (although other fungi are sometimes implicated). Infection spreads directly from the involved sinuses and is to be regarded as a medical emergency. Aggressive surgical debridement is often required in addition to systematic antifungal therapy and treatment of the underlying cause.

Close collaboration among physicians, ENT surgeon, microbiologists and histopathologists is necessary to reach a diagnosis. Superficial swabs are likely to be inadequate; scraping or biopsy material are most likely to yield the diagnosis.

Chronic sinusitis

Chronic sinusitis can be classified as pre- or post-surgical and may be a feature of some congenital immunodeficiency syndromes and disorders of mucociliary function, although most patients do not have these conditions. Sinus outflow obstruction, eg by nasal polyps, can also lead to chronic sinusitis. Chronic conditions can persist in some patients who have undergone unsuccessful surgery. Organisms isolated include S. pneumoniae, H. influenzae, streptococci of the “anginosus” group, M. catarrhalis, S. aureus, Pseudomonas species, and anaerobic organisms including Peptostreptococcus species, Propionibacterium species, Fusobacterium species and Prevotella sp and other anaerobic Gram-negative bacteria.

S. aureus and anaerobes are recovered from children with severe sinus symptoms requiring surgical intervention, or with protracted sinusitis (lasting over one year). Complications can be life-threatening. The most common complication is orbital infection. Intracranial infections are less common, but may cause significant morbidity and mortality. S. aureus and anaerobes are the predominant isolates from such cases. Another rare complication is osteomyelitis (see BSOP 42 - Investigation of Bone), usually staphylococcal, involving the frontal bone (Pott’s puffy tumour).

Subdural or extradural empyema secondary to sinusitis is called “sinusitis-induced” empyema and occurs in older children. The most frequently isolated organisms are streptococci of the “anginosus” group.

Chronic fungal sinusitis in apparently normal hosts is probably more common in the UK than is supposed, and a variety of saprophytic fungi have been isolated. Infection may take the form of a fungus ball in the sinus, allergic fungal sinusitis or, rarely, locally invasive infection which may be confused with Wegener’s granulomatosis or squamous cell carcinoma. Examination of tissue rather than pus is important in fungal sinusitis. Close co-operation among the surgeon, microbiologist and histopathologist is also necessary. Community-acquired chronic fungal sinusitis is a relatively common problem in some tropical and subtropical countries, eg in Africa and India, and imported cases may be encountered. The commonest cause overall is A. flavus. In some instances invasive disease will develop.

Members of the Zygomycotina are also capable of causing this condition, eg members of the Mucoraceae, and some of the Entomophthorales. Rhinoentomophthoromycosis (entomophthoromycosis conidiobolae) is a fairly distinct entity caused by Conidiobolus coronatus. It affects not only the sinuses, but also the subcutaneous tissues of the nose and face, and the nasal mucosa. It is found particularly in Africa, especially Nigeria. It is also reported from the Caribbean and South America.

Rhinospiridium seeberi, thought to be a non culturable protist that is only identified through histology, may affect the nasal mucosa of persons living in India, Sri Lanka, parts of SE Asia, and...
America and parts of Eastern Europe, producing polypoid masses. Again, examination of biopsy material, in collaboration with the histopathologist will be necessary to establish the diagnosis.

Of the exotic systemic mycoses, the Hazard Group 3 organism *Paracoccidiodes brasiliensis* (causing paracoccidiomycosis) is perhaps the one most regularly associated with disease affecting the upper aerodigestive tract, including the mouth and nose. The condition is reported from Mexico and South America. In a patient presenting with paracoccidiomycosis of this kind, mucocutaneous leishmaniasis would be an important differential diagnosis.

Other organisms

Although *Chlamydia pneumoniae* has been isolated from patients suffering from respiratory illness, including sinusitis, its role remains unclear.

TECHNICAL INFORMATION/LIMITATIONS

Storage of all tissues needs to comply with the Human Tissue Act.

In National Standard Methods, the term “CE marked leak proof container” is used to describe containers bearing the CE marking and which are used for the collection and transport of clinical specimens. The requirements of the EU *in vitro* Diagnostic Medical Devices Directive (98/79/EC Annex 1 B 2.1) state that such devices must “reduce as far as possible contamination of, and leakage from, the device during use and, in the case of specimen receptacles, the risk of contamination of the specimen. The manufacturing processes must be appropriate for these purposes”.
1 SAFETY CONSIDERATIONS

1.1 SPECIMEN COLLECTION
N/A

1.2 SPECIMEN TRANSPORT AND STORAGE
CE Marked leak proof container in a sealed plastic bag

1.3 SPECIMEN PROCESSING
Containment Level 2

Centrifugation must be carried out in sealed buckets

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet, isolator or be otherwise suitably contained

If the clinical details provided with the specimen suggest a diagnosis of a hazard group 3 organism eg Paracoccoides brasiliensis all work must be performed inside a microbiological safety cabinet at Containment Level 3. Sealed containers such as screw-capped bottles should be used for culture. Plates are not suitable.

Refer to current guidance on the safe handling of all organisms documented in the NSM

The above guidance should be supplemented with local COSSH and risk assessments

Compliance with postal and transport regulations is essential

2 SPECIMEN COLLECTION

2.1 OPTIMAL TIME FOR SPECIMEN COLLECTION
Before antimicrobial therapy where possible

2.2 CORRECT SPECIMEN TYPE AND METHOD OF COLLECTION
The specimen will be collected by a specialist ENT surgeon

2.3 ADEQUATE QUANTITY AND APPROPRIATE NUMBER OF SPECIMENS
Ideally, a minimum volume of 1 mL

3 SPECIMEN TRANSPORT AND STORAGE

3.1 TIME BETWEEN SPECIMEN COLLECTION AND PROCESSING
Specimens should be transported and processed as soon as possible

The volume of specimen influences the transport time that is acceptable. Large volumes of purulent material maintain the viability of anaerobes for longer

The recovery of anaerobes in particular is compromised if the transport time is delayed

3.2 SPECIAL CONSIDERATIONS TO MINIMISE DETERIORATION
If processing is delayed, refrigeration is preferable to storage at ambient temperature. Delays of over 48 h are undesirable
4 SPECIMEN PROCESSING

4.1 TEST SELECTION

Divide specimen on receipt for virology and bacteriology depending on clinical details

4.2 APPEARANCE

N/A

4.3 MICROSCOPY

(See BSOP TP 39 - Staining Procedures)

4.3.1 STANDARD

For mucoid specimens

Using a sterile loop select the most purulent or blood-stained portion of specimen and make a thin smear on a clean microscope slide for Gram staining

For non-mucoid specimens

Using a sterile pipette place one drop of centrifuged deposit (see Section 4.4.1) or neat specimen on to a clean microscope slide. Spread this with a sterile loop to make a thin smear for Gram staining.

4.3.2 SUPPLEMENTARY

Using a sterile pipette place one drop of centrifuged deposit (see Section 4.4.1) or neat specimen on a clean microscope slide
Add one drop of 20% KOH and place a coverslip on top.
Examine at x10 magnification using calcoflour white or blankofluor white staining for fungal hyphae (see BSOP TP 39 – Staining procedures)

4.4 CULTURE AND INVESTIGATION

4.4.1 PRE-TREATMENT

Standard

Non-mucoid sinus or antral washouts are processed as follows:

- Centrifuge specimen (for antral washouts), unless very mucoid, at 1200 xg for 10 minutes
- Discard most of the supernatant, leaving approximately 0.5 mL
- Resuspend the centrifuged deposit in the remaining fluid

Mucoid specimens are processed by digestion as follows:

- Add equal volume of a 0.1% solution of N-acetyl cysteine to specimen
- Agitate gently for approximately 10 seconds
- Incubation at 35-37°C for 15 minutes followed by gentle agitation for approximately 15 seconds will assist homogenisation
- Inoculate plates

4.4.2 SPECIMEN PROCESSING

Using a sterile loop inoculate each agar plate with centrifuged deposit (see QSOP 52 - Inoculation of Culture Media)

For the isolation of individual colonies, spread inoculum using a sterile loop

INVESTIGATION OF SINUS ASPIRATE
Issue no: 7.1 Issue date: 03.12.09 Issued by: Standards Unit, Department for Evaluations, Standards and Training Page no: 9 of 16
This NSM should be used in conjunction with the series of other NSMs from the Health Protection Agency
www.evaluations-standards.org.uk
Email: standards@hpa.org.uk
4.4.3 Culture Media, Conditions and Organisms for All Specimens

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Standard media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp °C</td>
<td>Atmos</td>
<td>Time</td>
</tr>
<tr>
<td>Sinusitis</td>
<td>Chocolate agar*</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>40-48 h</td>
</tr>
<tr>
<td></td>
<td>Blood agar</td>
<td>35-37</td>
<td>5-10% CO₂</td>
<td>16-24 h</td>
</tr>
<tr>
<td></td>
<td>Fastidious anaerobe agar with 5 µg metronidazole disc</td>
<td>35-37</td>
<td>anaerobic</td>
<td>5-7 d</td>
</tr>
<tr>
<td></td>
<td>Sabouraud Agar</td>
<td>30 and 35-37</td>
<td>Air</td>
<td>5 d</td>
</tr>
</tbody>
</table>

For these situations, add the following:

<table>
<thead>
<tr>
<th>Clinical details/conditions</th>
<th>Supplementary media</th>
<th>Incubation</th>
<th>Cultures read</th>
<th>Target organism(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Temp °C</td>
<td>Atmos</td>
<td>Time</td>
</tr>
<tr>
<td>If microscopy is suggestive of a mixed infection</td>
<td>Neomycin fastidious anaerobe agar with 5 µg metronidazole disc</td>
<td>35-37</td>
<td>Anaerobic</td>
<td>5 d</td>
</tr>
<tr>
<td></td>
<td>CLED/MacConkey agar</td>
<td>35-37</td>
<td>air</td>
<td>16-24 h</td>
</tr>
</tbody>
</table>

Other organisms for consideration – viruses

may include either a bacitracin 10 unit disc or bacitracin incorporated in the agar

Note: If chocolate agar with bacitracin incorporated in the agar is used a blood agar plate incubated in 5-10% CO₂ must be included for isolation of *M. catarrhalis* and *S. pneumoniae*.
4.5 IDENTIFICATION

4.5.1 MINIMUM LEVEL IN THE LABORATORY

- **Peptostreptococcus species**
 - "anaerobes" level
- **Propionibacterium species**
 - "anaerobes" level
- **Fusobacterium species**
 - "anaerobes" level
- **Prevotella species**
 - "anaerobes" level
- **β-haemolytic streptococci**
 - Lancefield group level
- **Enterobacteriaceae**
 - species level
- **Fungi**
 - genus level
- **H. influenzae**
 - species level
- **M. catarrhalis**
 - species level
- **Pseudomonas species**
 - species level
- **S. aureus**
 - species level
- **S. anginosus**
 - "S. anginosus" group level
- **S. pneumoniae**
 - species level

Organisms may be further identified if clinically or epidemiologically indicated

4.5.2 REFERRAL TO REFERENCE LABORATORIES

For information on the tests offered, turn around times, transport procedure and the other requirements of the reference laboratory, visit the website [here](http://www.evaluations-standards.org.uk)

Isolates associated with outbreaks, where epidemiologically indicated and organisms with unusual or unexpected resistance and whenever there is a laboratory or clinical problem or anomaly that requires elucidation should be sent to the appropriate reference laboratory.

4.6 ANTIMICROBIAL SUSCEPTIBILITY TESTING

Refer to NSM on Susceptibility Testing (BSOP 45 - Susceptibility Testing)

5 REPORTING PROCEDURE

5.1 MICROSCOPY

Report on WBCs and organisms detected

Report on fungal hyphae detected

Fungal infections may be the cause of life-threatening infection in patients who are compromised. Every time fungi are seen in preparations of this kind the medical microbiologist should be informed as soon as possible

5.1.1 MICROSCOPY REPORTING TIME

Urgent microscopy results to be telephoned or sent electronically when available

Written report, 16 – 72 h

5.2 CULTURE

Report isolation of clinically significant organisms isolated or

Report other growth, eg Mixed upper respiratory tract flora or

Report absence of growth

Also, report results of supplementary investigations
5.2.1 **Culture Reporting Time**
Clinically urgent culture results to be telephoned or sent electronically when available.

Written report, 16 – 72 h stating, if appropriate, that a further report will be issued.

Supplementary investigations see appropriate NSMs.

5.3 **Antimicrobial Susceptibility Testing**
Report susceptibilities as clinically indicated.

6 **Reporting to the HPA**

6.1 (Local and Regional Services and Centre for Infections)
Refer to the following:

- Individual NSMs on organism identification
- Health Protection Agency publications:
 - "Laboratory reporting to the HPA: A guide for diagnostic Laboratories"
 - "Hospital infection control: Guidance on the control of infection in hospital"
- Local guidelines

7 **Relevant National Standard Methods**

For additional details on specific areas of diagnosis refer to the relevant NSMs available through the Department for Evaluations, Standards and Training web page (www.hpa-standardmethods.org.uk).

Other documents that may be of relevance to this NSM are:

- BSOP 42 - Investigation of Bone
- BSOP 45 - Susceptibility Testing
- BSOP TP 39 - Staining Procedures
- QSOP 52 - Inoculation of Culture Media
- QSOP 60 - Respiratory Viruses
8 ACKNOWLEDGEMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Department for Evaluations, Standards and Training, Centre for Infections, Health Protection Agency, London.

For further information please contact us at:

Standards Unit
Department for Evaluations, Standards and Training
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ

E-mail: standards@hpa.org.uk
APPENDIX

INVESTIGATION OF SINUS ASPIRATE

Issue no: 7.1 Issue date: 03.12.09 Issued by: Standards Unit, Department for Evaluations, Standards and Training Page no: 14 of 16
BSOP 19/7.1
This NSM should be used in conjunction with the series of other NSMs from the Health Protection Agency
www.evaluations-standards.org.uk
Email: standards@hpa.org.uk
REFERENCES

INVESTIGATION OF SINUS ASPIRATE

Issue no: 7.1 Issue date: 03.12.09 Issued by: Standards Unit, Department for Evaluations, Standards and Training Page no: 15 of 16

BSOP 197.1

This NSM should be used in conjunction with the series of other NSMs from the Health Protection Agency

www.evaluations-standards.org.uk

Email: standards@hpa.org.uk

