IDENTIFICATION OF ENTEROBACTERIACEAE

BSOP ID 16

Issued by Standards Unit, Evaluations and Standards Laboratory
Centre for Infections
STATUS OF NATIONAL STANDARD METHODS

National Standard Methods, which include standard operating procedures (SOPs), algorithms and guidance notes, promote high quality practices and help to assure the comparability of diagnostic information obtained in different laboratories. This in turn facilitates standardisation of surveillance underpinned by research, development and audit and promotes public health and patient confidence in their healthcare services. The methods are well referenced and represent a good minimum standard for clinical and public health microbiology. However, in using National Standard Methods, laboratories should take account of local requirements and may need to undertake additional investigations. The methods also provide a reference point for method development.

National Standard Methods are developed, reviewed and updated through an open and wide consultation process where the views of all participants are considered and the resulting documents reflect the majority agreement of contributors.

Representatives of several professional organisations, including those whose logos appear on the front cover, are members of the working groups which develop National Standard Methods. Inclusion of an organisation’s logo on the front cover implies support for the objectives and process of preparing standard methods. The representatives participate in the development of the National Standard Methods but their views are not necessarily those of the entire organisation of which they are a member. The current list of participating organisations can be obtained by emailing standards@hpa.org.uk.

The performance of standard methods depends on the quality of reagents, equipment, commercial and in-house test procedures. Laboratories should ensure that these have been validated and shown to be fit for purpose. Internal and external quality assurance procedures should also be in place.

Whereas every care has been taken in the preparation of this publication, the Health Protection Agency or any supporting organisation cannot be responsible for the accuracy of any statement or representation made or the consequences arising from the use of or alteration to any information contained in it. These procedures are intended solely as a general resource for practising professionals in the field, operating in the UK, and specialist advice should be obtained where necessary. If you make any changes to this publication, it must be made clear where changes have been made to the original document. The Health Protection Agency (HPA) should at all times be acknowledged.

The HPA is an independent organisation dedicated to protecting people’s health. It brings together the expertise formerly in a number of official organisations. More information about the HPA can be found at www.hpa.org.uk.

The HPA aims to be a fully Caldicott compliant organisation. It seeks to take every possible precaution to prevent unauthorised disclosure of patient details and to ensure that patient-related records are kept under secure conditions\(^1\).

More details can be found on the website at www.evaluations-standards.org.uk. Contributions to the development of the documents can be made by contacting standards@hpa.org.uk.

Please note the references are now formatted using Reference Manager software. If you alter or delete text without Reference Manager installed on your computer, the references will not be updated automatically.

Suggested citation for this document:
INDEX

STATUS OF NATIONAL STANDARD METHODS ... 2
INDEX ... 3
AMENDMENT PROCEDURE .. 4
SCOPE OF DOCUMENT ... 5
INTRODUCTION .. 5
TECHNICAL INFORMATION ... 7
1 SAFETY CONSIDERATIONS .. 8
2 TARGET ORGANISMS .. 8
3 IDENTIFICATION ... 9
 3.1 MICROSCOPIC APPEARANCE ... 9
 3.2 PRIMARY ISOLATION MEDIA .. 9
 3.3 COLONIAL APPEARANCE .. 9
 3.4 TEST PROCEDURES ... 9
 3.5 FURTHER IDENTIFICATION ... 10
 3.6 STORAGE AND REFERRAL .. 10
4 IDENTIFICATION OF ENTEROBACTERIACEAE – FLOW CHART 11
5 REPORTING ... 12
 5.1 PRESUMPTIVE IDENTIFICATION ... 12
 5.2 CONFIRMATION OF IDENTIFICATION ... 12
 5.3 MEDICAL MICROBIOLOGIST ... 12
 5.4 CCDC ... 12
 5.5 CENTRE FOR INFECTIONS .. 13
 5.6 INFECTION CONTROL STAFF ... 13
6 REFERRALS ... 13
 6.1 REFERENCE LABORATORY ... 13
7 ACKNOWLEDGEMENTS AND CONTACTS .. 14
REFERENCES .. 15
AMENDMENT PROCEDURE

<table>
<thead>
<tr>
<th>Amendment Number/ Date</th>
<th>Issue no. Discarded</th>
<th>Insert Issue no.</th>
<th>Page</th>
<th>Section(s) involved</th>
<th>Amendment</th>
</tr>
</thead>
<tbody>
<tr>
<td>2/ 09.11.07</td>
<td>1.1</td>
<td>2</td>
<td>1</td>
<td>Front Page</td>
<td>Northern Ireland logo added</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>Flow chart</td>
<td>Title changed and flowchart put in to Visio format. Contents of flow chart updated.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13</td>
<td>6 Referrals</td>
<td>Links to reference laboratory user manuals inserted.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>15</td>
<td>References</td>
<td>References reviewed and updated</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>All</td>
<td>All</td>
<td>PDF links inserted to cross-reference NSM documents</td>
</tr>
</tbody>
</table>

Each National Standard Method has an individual record of amendments. The current amendments are listed on this page. The amendment history is available from standards@hpa.org.uk.

On issue of revised or new pages each controlled document should be updated by the copyholder in the laboratory.
IDENTIFICATION OF ENTEROBACTERIACEAE

SCOPE OF DOCUMENT
This National Standards Method (NSM) describes the identification of members of the family Enterobacteriaceae. There are a large number of species included in the family. In routine clinical microbiology laboratories it is usual to attempt identification by use of biochemical tests. The level of identification depends on the site of infection, the immune status of the host and the need for epidemiological surveillance.

Because of the large number of species involved, this NSM will concentrate on the most common genera and species isolated from clinical specimens. The identification of Enterobacteriaceae can be simplified by taking advantage of the fact that three species comprise 80 to 95% of all isolates in the clinical setting. These are Escherichia coli, Klebsiella pneumoniae and Proteus mirabilis. The other species can be easily identified using biochemical tests.

INTRODUCTION

Taxonomy
The nomenclature of the Enterobacteriaceae is complicated and has been based on biochemical and antigenic characteristics. Recently, the application of new technologies such as DNA hybridisation has resulted in numerous changes in classification of the Enterobacteriaceae. In 1972 there were 26 recognised species, now there are in excess of 170.

Characteristics of Enterobacteriaceae
Members of the Enterobacteriaceae are Gram-negative, straight rods, some of which are motile. Most species grow well at 37°C, although some species grow better at 25 - 30°C. They are facultatively anaerobic, oxidase-negative and catalase-positive (except Shigella dysenteriae type 1). They are distributed worldwide and may be found in soil, water, plants and animals.

Common genera of the family Enterobacteriaceae

Citrobacter species
There are eleven species of which nine have been recovered from clinical material. They may be found in the faeces of humans and animals as part of the normal flora and grow readily on ordinary media. Colonies are generally smooth and moist although mucoid or rough strains occur. Some strains of Citrobacter resemble Salmonella species biochemically and agglutinate with Salmonella polyvalent antisera, which may lead to misidentification.

Enterobacter species
There are eleven species, but only eight have been isolated from clinical material (see section 2). They grow readily on ordinary agar, ferment glucose with the production of acid and gas, and are motile by peritrichous flagella. Some strains with a K antigen possess a capsule.

Escherichia species
There are six species, of which four are known to cause human disease (see section 2). The most commonly isolated is Escherichia coli, which contains numerous serotypes, some of which are associated with specific diseases.

A number of strains of E. coli may produce enterotoxins or other virulence factors, including those associated with invasiveness. Some strains are capsulated with a K antigen.

For more information on the identification of E. coli O157 see BSOPID 22 - Identification of Escherichia coli O157.
Hafnia alvei
The genus *Hafnia* contains a single species, *H. alvei*. It grows readily on ordinary media and is generally motile. Motility is more pronounced at 30°C than 37°C. *H. alvei* can resemble non-motile, salmonella biochemically and can agglutinate in polyvalent salmonella antisera.

Klebsiella species
The genus *Klebsiella* contains five species and four subspecies. Four species, previously named *Klebsiella pneumoniae*, *Klebsiella ozaenae*, *Klebsiella rhinoscleromatis* and *Klebsiella aerogenes* are now classed as subspecies of *K. pneumoniae*. *K. pneumoniae* subspecies *aerogenes* is the most frequently isolated species. All grow readily on ordinary media, are non-motile and are capsulated.

Morganella morganii
The genus *Morganella* contains a single species, *Morganella morganii*, which is divided in to two sub species. It is motile with peritrichous flagella, but some strains do not form flagella above 30°C. *M. morganii* can resemble non-motile, salmonella biochemically and can agglutinate in polyvalent salmonella antisera.

Proteus species
There are four species of *Proteus*, of which three cause disease (see section 2). All strains are urease positive and motile. They may swarm on blood agar, producing concentric zones or an even film. They are resistant to polymyxin B and colistin. *Proteus* species can resemble non-motile salmonella biochemically and can agglutinate in polyvalent salmonella antisera.

Providencia species
The genus *Providencia* was originally established for organisms similar to *Proteus* species that were urease negative. There are five species within the genus, of which three cause disease (see section 2). All are motile but do not swarm. They are resistant to polymyxin B and colistin.

Salmonella species
Serotypes of *Salmonella* and *Arizona* are now considered to belong to two species – *Salmonella Bongori*, (formerly subspecies V) and *Salmonella Enterica*, which comprises six subspecies: I = *enterica*, II = *salamae*, IIIa = *arizonae*, IIIb = *diarizonae*, IV = *houtenae*, and VI = *indica*. Most serotypes are motile; all except *Salmonella* Typhi produce gas from glucose. Most produce hydrogen sulphide except S. Typhi and *Salmonella* Paratyphi A (which is a weak producer).

For more information on serotyping of *Salmonella* species, see **BSOPID 24 - Identification of Salmonella Species**

Serratia species
The genus *Serratia* contains ten species (but only two are commonly isolated from clinical material) and two sub species. They are *Serratia liquefaciens* and *Serratia marcescens*, the latter often producing a red pigment when grown at 20°C. Most of the species are motile. Members of the genus characteristically produce three enzymes - lipase, DNase and gelatinase. They are also resistant to polymyxin B and colistin, and this resistance may be heterogeneous, leading to a target-zone appearance.

Shigella species
There are four species, *Shigella dysenteriae*, *Shigella flexneri*, *Shigella boydii* and *Shigella sonnei*. All are non-motile. *Shigella* species are highly infective, particularly *S. dysenteriae*.

For more information on the identification of *Shigella* species, see **BSOPID 20 - Identification of Shigella Species**

Yersinia species
The genus *Yersinia* contains eleven species, three of which (*Yersinia pestis*, *Yersinia enterocolitica* and *Yersinia pseudotuberculosis*) are known pathogens of man and animals. All members of the genus grow readily on ordinary media.
Y. pestis is not fastidious but, after incubation for 24 hours on blood agar, colonies are usually much smaller than those of other Enterobacteriaceae. Y. pestis is always non-motile. The other species are non-motile at 37°C but motile at 30°C.

For more information on the identification of Yersinia species see BSOPID 21 - Identification of Yersinia Species from Faeces

Other genera of the family Enterobacteriaceae
Other genera of the family reported to have caused infection are listed in section 2.

Principles of identification
Colonial morphology, Gram’s stain, oxidase and the use of several biochemical tests identify isolates from clinical material. Enteric pathogens such as Salmonella species should be identified biochemically and typed serologically. Hafnia, Morganella and Proteus species can resemble non-motile salmonella biochemically and can agglutinate in polyvalent salmonella antisera. Because of the diversity of biochemical activities, all the reactions of every species are not described in this NSM. Therefore only a few screening tests are included together with results for the more common genera and species.

If further identification or confirmation is required, isolates should be sent to the Reference Laboratory.

Careful consideration should be given to isolates that give an unusual identification.

TECHNICAL INFORMATION
N/A
1 SAFETY CONSIDERATIONS

All S. Typhi, S. Paratyphi A, B and C, S. dysenteriae type 1, E. coli O157, Salmonella sendai and Salmonella cholera-suis, and Yersinia pestis are Hazard Group 3 organisms and suspected isolates must be handled in a containment level 3 room.

Refer to current guidance on the safe handling of all organisms documented in this NSM.

Laboratory procedures that give rise to infectious aerosols must be conducted in a microbiological safety cabinet.

Shigella species and E. coli O157 are highly infective, and as few as 10 organisms are required for an infective dose. They have been reported as a cause of laboratory acquired infection.

The above guidance should be supplemented with local COSHH and risk assessments.

Compliance with postal and transport regulations is essential.

2 TARGET ORGANISMS

Enterobacteriaceae reported to have caused human infections

Cedecea davisae, lapagei, neteri, sp 3, sp 5
Citrobacter amalonaticus, braakii, farmeri, freundii, koseri, rodentium, sedlakii, werkmanii, youngae
Edwardsiella hoshinae, ictaluri, tarda
Enterobacter aerogenes, amnigenus, asburiae, cloacae, gergoviae, hormaechei, sakazakii, taylorae
Escherichia coli, fergusonii, hermanii, vulneris
Ewingella americana
Hafnia alvei
Klebsiella oxytoca, pneumoniae subspecies aerogenes, ozaenae, pneumonieae, and rhinoscleromatis
Kluyvera ascorbata, cryocrescens, georgiana
Leclercia adecarboxylata
Morganella morganii
Pantoea agglomerans, dispersa
Photorhabdus luminescens
Proteus mirabilis, penneri, vulgaris
Providencia alcalifaciens, rettgeri, stuartii
Rahnella aquatilis
Salmonella enterica (>2000 serotypes)
Serratia fonticola, grimesii, liquefaciens, marcescens, odorifera, pylonithica, proteamaculans, rubidae
Shigella boydii, dysenteriae, flexneri, sonnei
Tatumella pyseos
Yersinia aldovae, bercovieri, enterocolitica, intermedia, frederiksenii, kristensenii, mollaretii, pestis, pseudotuberculosis, rohdei
Yokenella regensburgei

Other genera and species of the Enterobacteriaceae may rarely be associated with human disease.
3 IDENTIFICATION

3.1 MICROSCOPIC APPEARANCE
Gram stain (see BSOPTP 39 - Staining Procedures)

Gram-negative rods, some may show bipolar staining (eg Yersinia species)

3.2 PRIMARY ISOLATION MEDIA

Blood agar (BA): 16 – 24 h incubation in 5 - 10% CO₂ at 35°C - 37°C

MacConkey (MAC) agar: 16 – 24 h incubation in air at 35°C - 37°C
Cystine-lactose-electrolyte deficient (CLED) agar with bromothymol blue (CLED B) or Andrade’s indicator (CLED A): 16 – 24 h incubation in air at 35°C - 37°C

Selective enteric media, incubation in air at 35°C - 37°C for 16 – 24 h:
Desoxycholate citrate agar (DCA)
Xylose-lysine-deoxycholate agar (XLD)
Cefixime-tellurite-sorbitol-MacConkey (CT-SMAC) agar
Thiosulphate-citrate-bile salt (TCBS) agar

Cefsulodin-Irgasan (triclosan)-novobiocin (CIN) agar incubated in air at 32°C for 24 – 48 h

Chromogenic media incubated in air at 35°C - 37°C for 16 - 24 h

3.3 COLONIAL APPEARANCE

BA - Gram-negative rods 2 - 3 mm diameter, low, convex, grey, smooth or mucoid, may be haemolytic or swarming.

MAC - Gram-negative rods may appear pink (lactose fermenting) or colourless (lactose non-fermenting) size and shape vary with individual species.

CLED B - Gram-negative rods may appear yellow (lactose fermenting) or blue (lactose non-fermenting) size and shape vary with individual species.

CLED A - Gram-negative rods may appear pink (lactose fermenting) or green translucent (lactose non-fermenting) size and shape vary with individual species.

DCA - Gram-negative rods may appear pink (lactose fermenting) or colourless (lactose non-fermenting) and may have black centre (H₂S producers).

XLD - Gram-negative rods may appear yellow (xylose, lactose or sucrose fermenting) or pink (non-fermenting) and may have black centre (H₂S producers).

CT-SMAC - Gram-negative rods may appear pink (sorbitol-fermenting) or colourless (sorbitol non-fermenting).

TCBS - Gram-negative rods may appear yellow (sucrose fermenting) or blue-green (sucrose non-fermenting).

CIN - Gram-negative rods, colonies may have deep red centres (mannitol fermenting) surrounded by a translucent border giving the appearance of a ‘bull’s eye’.

NOTE: Colonies of Yersinia species may be smaller than those of other Enterobacteriaceae.

3.4 TEST PROCEDURES

Oxidase (see BSOPTP 26 - Oxidase Test).
All Enterobacteriaceae are oxidase-negative. Lactose fermentation exhibits variable results depending on the genus and species.

3.5 **FURTHER IDENTIFICATION**

Commercial identification kit

Serotyping.

3.6 **STORAGE AND REFERRAL**

Save the pure isolate on a nutrient agar slope for referral to the Reference Laboratory.
4 IDENTIFICATION OF ENTEROBACTERIACEAE – FLOW CHART

- **Clinical specimens**
 Primary isolation plate

- **BA**
 CLED B or CLED A, MAC
 DCA, XLD, CT-SMAC, TCBS, CIN agar

- **Carbohydrate fermenting**
 Further identification if clinically indicated

- **Carbohydrate non-fermenting**
 Oxidase
 Performed from non-selective medium

 - **Negative**
 Possible
 Pseudomonas species or
 Pasteurella species
 (See BSOP ID 17 & 13)

 - **Positive**
 Further identification
 Serology for possible:
 Salmonella / *Shigella* species (XLD / DCA)
 E. coli O157 (CT-SMAC)
 Y. enterocolitica (CIN)
 (See BSOP ID 20, 21, 22, 24)
 Commercial identification system or other biochemical identification or send to the Reference Laboratory

The flowchart is for guidance only.
5 REPORTING

5.1 PRESumptive IDENTIFICATION
If appropriate growth characteristics, colonial appearance, Gram’s stain of pure culture, oxidase and serological results are demonstrated.

5.2 CONFIRMATION OF IDENTIFICATION
Following commercial identification kit or other biochemical identification results or send to the Reference Laboratory.

5.3 MEDICAL MICROBIOLOGIST
Inform the medical microbiologist of presumptive and confirmed Y. pestis, S. Typhi, S. Paratyphi, Shigella species, E. coli O157 and Salmonella species (according to local procedures).

The medical microbiologist should also be informed if the request card bears information relating to infection with Y. pestis eg
- ulceroglandular/pneumonic syndrome
- septicaemia
- travelling, hunting, farming, or veterinary work overseas

Information relating to cases of:
- enterocolitis
- dysentery
- septicaemia
- haemolytic-uraemic syndrome
- neurological dysfunction or confusional states
- (non-blanching) rash

Presumptive or confirmed agents of enteric fever, dysentery, and enterocolitis should also be relayed to the medical microbiologist, especially if the patient has a history of:
- recent foreign travel
- farming (or visits to farms)
- veterinary or laboratory work
- alcoholism, substance abuse, immunodeficiency or other serious underlying disorder such as cancer

Presumptive and confirmed isolates of Enterobacteriaceae from cases of food poisoning and from investigations of outbreak situations should additionally be reported to the medical microbiologist

Follow local protocols for reporting to clinician.

5.4 CCDC
Refer to local Memorandum of Understanding.
5.5 CENTRE FOR INFECTIONS

Refer to current guidelines on CDSC and COSURV reporting.

5.6 INFECTION CONTROL STAFF

Inform the infection control team of presumptive and confirmed isolates of *E. coli* O157, *Yersinia*, *Salmonella* and *Shigella* species

6 REFERRALS

6.1 REFERENCE LABORATORY

For information on the tests offered, turn around times, transport procedure and the other requirements of the reference laboratory refer to: http://www.hpa.org.uk/Centre for Infections/lep/default.htm

Laboratory of Enteric Pathogens
Centre for Infection
Health Protection Agency
61 Colindale Avenue
London
NW9 5HT

Contact Centre for Infections main switchboard: Tel. +44 (0) 20 8200 6173
7 ACKNOWLEDGEMENTS AND CONTACTS

This National Standard Method has been developed, reviewed and revised by the National Standard Methods Working Group for Clinical Bacteriology (http://www.hpa-standardmethods.org.uk/wg_bacteriology.asp). The contributions of many individuals in clinical bacteriology laboratories and specialist organisations who have provided information and comment during the development of this document, and final editing by the Medical Editor are acknowledged.

The National Standard Methods are issued by Standards Unit, Evaluations and Standards Laboratory, Centre for Infections, Health Protection Agency London.

For further information please contact us at:

Standards Unit
Evaluations and Standards Laboratory
Centre for Infections
Health Protection Agency
Colindale
London
NW9 5EQ
E-mail: standards@hpa.org.uk
REFERENCES

